Skip to main content

Bibliographical Backgrounds: Generation of Radicals by Visible Light Photoredox Catalysis

  • Chapter
  • First Online:
Development of New Radical Cascades and Multi-Component Reactions

Part of the book series: Springer Theses ((Springer Theses))

  • 759 Accesses

Abstract

Visible light has the potential to serve as a sustainable, clean, economical and abundant source of energy. Visible light-induced electron transfer reactions are thus widely used in nature. Photosynthetic organisms absorb visible light by antenna proteins containing chromophores. Subsequent photon-induced electron transfers generate charge-separated states which are used to prepare various high-energy molecules required to fuel organisms. The progressive elucidation of the molecular mechanisms of photosynthesis has raised tremendous hopes that efficient means would be found for artificial conversion of solar energy. Thus, one century ago, Professor Ciamician (University of Bologna), one of the pioneer in photochemistry forecasted: “The photochemical processes, that hitherto have been guarded secret of the plants, will have been mastered by human industry which will know how to make them bear even more abundant fruit than nature, for nature is not in a hurry but mankind is”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Generally for ketones λmax absorption ~280 nm, for non-conjugated alkenes λmax absorption ~180 nm.

  2. 2.

    Image inspired from http://www.dlt.ncssm.edu/

  3. 3.

    The free energy changes ΔG involved in such redox reactions can be calculated by: \(\Updelta {\text{G}}_{\text{ox}} \left( {\text{eV}} \right) = - {\text{F}}/{\text{N}}_{\text{A}} (0. 8 4-{\text{EQ}}/{\text{Q}}^{ \bullet - } ) \) or \( \Updelta {\text{G}}_{\text{red}} \left( {\text{eV}} \right) = - {\text{F}}/{\text{N}}_{\text{A}} ({\text{EQ}}/{\text{Q}}^{ \bullet + } + 0.86) \). With F (Faraday constant) = 96 485 C/mol and NA (Avogadro constant) = 6,022 × 1023 mol−1.

  4. 4.

    Standard redox potential for N-alkyl-2,3-dihydrobenzothiazole 6 is −0.33 V.

  5. 5.

    Evidence for the formation of carbocation intermediate was obtained by isolation of a furan side product when 4-penten-1-ol was used as the olefin. Furthermore, alkyl radicals are known to be easily oxidized (+0.47 V vs SCE in MeCN for \( {\text{Me}}_{ 2} {\text{CH}}^{ \bullet } \)).

References

  1. Balzani, V., Credi, A., & Venturi, M. (2008). ChemSusChem, 1, 26–58.

    Article  CAS  Google Scholar 

  2. Ciamician, G. (1912). Science, 36, 385–394.

    Article  CAS  Google Scholar 

  3. Sala, X., Romero, I., Rodriguez, M., Escriche, L., & Llobet, A. (2009). Angewandte Chemie International Edition, 48, 2842–2852.

    Article  CAS  Google Scholar 

  4. Lehn, J.-M., & Ziessel, R. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 701–704.

    Article  CAS  Google Scholar 

  5. Hari, D. P., & König, B. (2011). Organic Letters, 13, 3852–3855.

    Article  CAS  Google Scholar 

  6. Neumann, M., Füldner, S., König, B., & Zeitler, K. (2011). Angewandte Chemie International Edition, 50, 951–954.

    Article  CAS  Google Scholar 

  7. Yoon, T. P., Ischay, M. A., & Du, J. (2010). Nature Chemistry, 2, 527–532.

    Article  CAS  Google Scholar 

  8. Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Chemical Society Reviews, 40, 102–113.

    Article  CAS  Google Scholar 

  9. Teply, F. (2011). Collection of Czechoslovak Chemical Communications, 76, 859–917.

    Article  CAS  Google Scholar 

  10. Burstall,F. H. (1936). Journal of Chemical Society, 173–175.

    Google Scholar 

  11. Kalyanasundaram, K. (1982). Coordination Chemistry Reviews, 46, 159–244.

    Article  CAS  Google Scholar 

  12. Lytle, F. E., & Hercules, D. M. (1969). Journal of the American Chemical Society, 91, 253–257.

    Article  CAS  Google Scholar 

  13. Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., & Balzani, V. (2007). Topics in Current Chemistry, 280, 117–214.

    Article  CAS  Google Scholar 

  14. Van Houten, J., & Watts, R. J. (1976). Journal of the American Chemical Society, 98, 4853–4858.

    Article  Google Scholar 

  15. Montalti, M., Cedi, A., Prodi, L., & Gandolfi, M. T. (2006). Handbook of photochemistry (3rd ed.). NY: CRC press and Taylor & Francis Group.

    Google Scholar 

  16. Whitten Acc, D. G. (1980). Chemical Research, 13, 83–90.

    Article  Google Scholar 

  17. Ishitani, O., Pac, C., & Sakurai, H. (1983). Journal of Organic Chemistry, 48, 2941–2942.

    Article  CAS  Google Scholar 

  18. Ishitani, O., Yanagida, S., Takamaku, S., & Pac, C. (1987). Journal of Organic Chemistry, 52, 2790–2799.

    Article  CAS  Google Scholar 

  19. Jin, M., Zhang, D., Yang, L., & Liu, Y. (2000). Z. Liu. Tetrahedron Letters, 41, 7357–7360.

    Article  CAS  Google Scholar 

  20. Mashraqui, S. H., & Kellogg, R. M. (1985). Tetrahedron Letters, 26, 1453–1456.

    Article  CAS  Google Scholar 

  21. Fukuzumi, S., Mochizuki, S., & Tanaka, T. (1990). Journal of Physical Chemistry, 94, 722–726.

    Article  CAS  Google Scholar 

  22. Narayanam, J. M. R., Tucker, J. W., & Stephenson, C. R. J. (2009). Journal of the American Chemical Society, 131, 8756–8757.

    Article  CAS  Google Scholar 

  23. Furst, L., Narayanam, J.M.R. & Stephenson, C.R.J. (2011). Angewandte Chemie International Edition 50, early view.

    Google Scholar 

  24. Furst, L., Matsuura, B. S., Narayanam, J. M. R., Tucker, J. W., & Stephenson, C. R. J. (2010). Organic Letters, 12, 3104–3107.

    Article  CAS  Google Scholar 

  25. Tucker, J. W., Narayanam, J. M. R., Krabbe, S. W., & Stephenson, C. R. J. (2010). Organic Letters, 12, 368–371.

    Article  CAS  Google Scholar 

  26. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., & Barigelleti, F. (2007). Topics in Current Chemistry, 281, 143–203.

    Article  CAS  Google Scholar 

  27. Tucker, J.W., Nguyen, J.D., Narayanam, J.M.R., Krabbe, S.W. & Stephenson, C.R.J. (2010). Chemical Communications, 4985–4987.

    Google Scholar 

  28. Andrews, R. S., Becker, J. J., & Gagné, M. R. (2010). Angewandte Chemie International Edition, 49, 7274–7276.

    Article  CAS  Google Scholar 

  29. Giese, B., & Dupuis, J. (1983). Angewandte Chemie International Edition, 22, 622–623.

    Article  Google Scholar 

  30. Nicewicz, D. A., & MacMillan, D. W. C. (2008). Science, 322, 77–80.

    Article  CAS  Google Scholar 

  31. Wayner, D. D. M., Dannenberg, J. J., & Griller, D. (1986). Chemical Physics Letters, 131, 189–191.

    Article  CAS  Google Scholar 

  32. Nagib, D. A., Scott, M. E., & MacMillan, D. W. C. (2009). Journal of the American Chemical Society, 131, 10875–10877.

    Article  CAS  Google Scholar 

  33. Shih, H.-W., Vander Wal, M. N., Grange, R. L., & MacMillan, D. W. C. (2010). Journal of the American Chemical Society, 132(13600), 13603.

    Google Scholar 

  34. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., & Barigelleti, F. (2007). Topics in Current Chemistry, 281, 143–203.

    Article  CAS  Google Scholar 

  35. Ischay, M. A., Anzovino, M. E., Du, J., & Yoon, T. P. (2008). Journal of the American Chemical Society, 130, 12886–12887.

    Article  CAS  Google Scholar 

  36. Du, J., & Yoon, T. P. (2009). Journal of the American Chemical Society, 131, 14604–14605.

    Article  CAS  Google Scholar 

  37. Hurtley, A. E., Cismesia, M. A., Ischay, M. A., & Yoon, T. P. (2011). Tetrahedron, 67, 4442–4448.

    Article  CAS  Google Scholar 

  38. Ischay, M. A., Lu, Z., & Yoon, T. P. (2010). Journal of the American Chemical Society, 132, 8572–8574.

    Article  CAS  Google Scholar 

  39. Toba, Y., & Usui, Y. (1999). Macromolecules, 32, 6545–6551.

    Article  CAS  Google Scholar 

  40. Hedstrand, D. M., Kruizinga, W. H., & Kellog, R. M. (1979). Journal of Organic Chemistry, 44, 4953–4962.

    Article  Google Scholar 

  41. Okada, K., Okamoto, K., Morita, N., Okubo, K., & Oda, M. (1991). Journal of the American Chemical Society, 113, 9401–9402.

    Article  CAS  Google Scholar 

  42. Okada, K., Okamoto, K., & Oda, M. (1988). Journal of the American Chemical Society, 110, 8736–8738.

    Article  CAS  Google Scholar 

  43. Cano-Yelo, H., & Deronzier, A. (1984). Journal of Chemical Society Faraday Transactions, 1(25), 5517–5520.

    Google Scholar 

  44. Cano-Yelo, H., & Deronzier, A. (1984). Tetrahedron Letters, 25, 5517–5520.

    Article  CAS  Google Scholar 

  45. Chen, Y., Kamlet, A. S., Steinman, J. B., & Liu, D. R. (2011). Nature Chemistry, 3, 146–153.

    Article  Google Scholar 

  46. Lalevée, J., Blanchard, N., Tehfe, M.-A., Morlet-Savary, F., & Fouassier, J.-P. (2010). Macromolecules, 43(10191), 10195.

    Google Scholar 

  47. Lalevée, J., Blanchard, N., Tehfe, M.-A., Peter, M., Morlet-Savary, F., & Fouassier, J.-P. (2011). Macromolecular Rapid Communications, 32, 917–920.

    Article  Google Scholar 

  48. Tucker, J.W., Narayanam, J.M.R., Shah, P.S. & Stephenson, C.R.J. (2011). Chemical Communication, 5040–5042.

    Google Scholar 

  49. Irie, R., Masutani, K., & Katsuki, T. (2000). Synlett, 10, 1433–1436.

    Google Scholar 

  50. Hamada, T., Ishida, H., Usui, S., Watanabe, Y., Tsumura, K. & Ohkubo, KJ. Chemical Society, Chemical Communication, 909–911.

    Google Scholar 

  51. Condie, G., Gonzalez-Gomez, J. C., & Stephenson, C. R. J. (2010). Journal of the American Chemical Society, 132, 1464–1465.

    Article  CAS  Google Scholar 

  52. Rueping, M., Vila, C., Koenig, R.M., Poscharny, K. & Fabry, D.C. Chemical Comumunication, 2360–2362.

    Google Scholar 

  53. Rueping, M., Zhu, S. & Koenig, R.M. (2011). Chemical Communication, 8679–8681.

    Google Scholar 

  54. Xuan, J., Cheng, Y., An, J., Lu, L.-Q., Zhang, X.-X. & Xiao, W.-J. Chemical Communication, 8337–8339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Larraufie .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larraufie, MH. (2014). Bibliographical Backgrounds: Generation of Radicals by Visible Light Photoredox Catalysis. In: Development of New Radical Cascades and Multi-Component Reactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01324-4_4

Download citation

Publish with us

Policies and ethics