Skip to main content

Emerging Tools for Quantifying Unconscious Analgesia: Fractional-Order Impedance Models

  • Chapter
  • First Online:
Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

Abstract

This paper presents the application of model-based predictive control (MPC) in combination with a sensor for the measurement of analgesia (pain relief) in an unconscious patient in order to control the level of anesthesia. The MPC strategy uses fractional-order impedance models (FOIMs) to model the diffusion process that occurs in the human body when an analgesic drug is taken up. Based on this control strategy an early dawn concept of the pain sensor is developed. The grand challenges that coincide with this development include identification of the patient model, validation of the pain sensor, and validation of the effect of the analgesic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey JM, Haddad WM (2005) Drug dosing control in clinical pharmacology. IEEE Control Syst Mag N Y 25(2):35–51

    Article  Google Scholar 

  2. Haddad WM, Hayakawa T, Bailey JM (2003) Nonlinear adaptive control for intensive care unit sedation and operating room hypnosis. Am Control Conf 2:1808–1813

    Google Scholar 

  3. O’Hara D, Bogen D, Noordergraaf A (1992) The use of computers for controlling the delivery of anesthesia. Anesthesiology 77:563–581

    Article  Google Scholar 

  4. Greenhow SG, Linkens DA, Asbury AJ (1993) Pilot study of an expert system adviser for controlling general anesthesia. Br J Anaesth 71:359–365

    Article  Google Scholar 

  5. Petersen-Felix S, Hacisalihzade S, Zbinden AM, Feigenwinter P (1995) Arterial pressure control with isoflurane using fuzzy logic. Br J Anaesth 74:66–72

    Article  Google Scholar 

  6. Curatolo M, Derighetti M, Petersen-Felix S, Feigenwinter P, Fisher M, Zbinden AM (1996) Fuzzy logic control of inspired isoflurane and oxygen concentrations using minimal flow anesthesia. Br J Anaesth 76:245–250

    Article  Google Scholar 

  7. Struys M, Vereecke H, Moerman A, Jensen EW, Verhaeghen D, De Neve N, Dumortier F, Mortier E (2003) Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials, and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil. Anesthesiology 99:802–814

    Article  Google Scholar 

  8. Asbury AJ (1997) Feedback control in anesthesia. Int J Clin Monit Comput 14:1–10

    Article  Google Scholar 

  9. Northrop RB (2000) Endogenous and exogenous regulation and control of physiological systems. CRC, Boca Raton

    Google Scholar 

  10. De Keyser R (2003) Model based predictive control for linear systems. UNESCO Encyclopaedia of Life Support Systems, Article contribution 6.43.16.1, EOLSS Publishers Co Ltd, Oxford, ISBN 0 9542 989 18-26-34, 30p

    Google Scholar 

  11. Kress J, Pohlman A, Hall J (2002) Sedation and analgesia in the intensive care unit. Am J Respir Crit Care Med 166:1024–1028

    Article  Google Scholar 

  12. Steen-Knudsen O (2002) Biological membranes. Theory of transport, potentials and electric impulses. Cambridge University Press, Cambridge

    Google Scholar 

  13. Berg JM (ed) (2002) Biochemistry, 6th edn. W.H. Freeman and Company, New York

    Google Scholar 

  14. De Keyser R, Van Cauwenberghe A (1981) A self-tuning multistep predictor application. Automatica 17:167–174

    Article  Google Scholar 

  15. Hemmerling TM, Salhab E, Aoun G, Charabati S, Mathieu P (2007) The Analgoscore: a novel score to monitor intraoperative pain and its use for Remifentanil closed loop application. In: Proceedings of the IEEE international conference on systems, man and cybernetics, pp 1494–1499

    Google Scholar 

  16. Riker RR, Picard JT, Fraser GL (1999) Prospective evaluation of the sedation-agitation scale for adult critically ill patients. Crit Care Med 27:1325–1329

    Article  Google Scholar 

  17. Sessler CN, Gosnell M, Grap MJ, Brophy GT, O’Neal PV, Tesoro E, Elswick RK (2000) A new Agitation-Sedation Scale for critically ill patients: development and testing of validity and inter-rater reliability. Am J Respir Crit Care Med 161:A506

    Google Scholar 

  18. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86:836–847

    Article  Google Scholar 

  19. Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (2005) Fractals in biology and medicine, vol IV. Birkhauser, Berlin

    Book  Google Scholar 

  20. West BJ (1990) Fractal physiology and chaos in medicine, studies of nonlinear phenomena in life sciences, vol 1. World Scientific, Singapore

    Book  Google Scholar 

  21. Benchellal A, Poinot T, Trigeassou JC (2005) Approximation and identification of diffusive interfaces by fractional models. Signal Process 86:2712–2727

    Article  Google Scholar 

  22. Oustaloup A (1996) La derivation non entiere. Hermes, Paris (in French)

    Google Scholar 

  23. Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  24. Ionescu CM, De Keyser R (2009) Relations between fractional order model parameters and lung pathology in chronic obstructive pulmonary disease. IEEE Trans Biomed Eng 56(4): 978–987

    Article  Google Scholar 

  25. Ionescu CM, Machado JT, De Keyser R (2011) Modeling of the lung impedance using a fractional order ladder network with constant phase elements. IEEE Trans Biomed Circuits Syst 5(1):83–89

    Article  Google Scholar 

  26. Ionescu CM, Hodrea R, De Keyser R (2011) Variable time-delay estimation for anesthesia control during intensive care. IEEE Trans Biomed Eng 58(2):363–369

    Article  MATH  Google Scholar 

  27. Lundstrom B, Higgs M, Spain W, Fairhall A (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1135–1342

    Article  Google Scholar 

  28. Drew P, Abbot L (2003) Scale-invariant synaptic dynamics in a computational model of recognition memory. Soc Neurosci Abstr 28:89–99

    Google Scholar 

  29. Ionescu CM (2012) Phase constancy in a ladder model of neural dynamics. IEEE Trans Syst Man Cybern A Syst Hum 42(6):1543–1551

    Article  Google Scholar 

  30. Dokoumetzidis A, Magin R, Macheras P (2010) A commentary on fractionalization of multi-compartmental models. J Pharmacokinet Pharmacodyn 37(2):203–207

    Article  Google Scholar 

Download references

Acknowledgements

Clara M. Ionescu acknowledges the Flanders Research Center (FWO) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chevalier, A., Copot, D., Ionescu, C.M., Machado, J.A.T., De Keyser, R. (2014). Emerging Tools for Quantifying Unconscious Analgesia: Fractional-Order Impedance Models. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics