Skip to main content

Light Trapping for Solar Cells

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Abstract

The textured microstructures and the photonic nanostructures for light trapping structures are discussed. The inverted pyramidal microstructures with and without the tips were fabricated, and their light trapping performances were measured by the reflectance spectroscopy and simulated by ray tracing method. It is found that there are more chances of light reflecting between the surfaces of the tips and the inverted pyramids. Four kinds of nanophotonic light trapping structures are simulated by the finite-difference time-domain method, and their optical transmissions and light trapping performances are calculated. The results show that mixing the dielectric and metallic nanoparticles or materials can have superior light trapping performances as comparing to using dielectric nanoparticles only or using metallic nanoparticles only. The other kinds of light trapping structures and their outlooks are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf, M.: Historical development of solar cell. In: Backus, C.E. (ed.) Solar Cells. IEEE Press, New York (1976)

    Google Scholar 

  2. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 41). Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013)

    Article  Google Scholar 

  3. Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Berney Needleman, D., Buonassisi, T.: Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874–5883 (2012)

    Article  Google Scholar 

  4. Daif, O.E., Drouard, E., Gomard, G., Kamiski, A., Fave, A., Lemiti, M., Ahn, S., Kim, S., Cabarrocas, P.R.I., Jeon, H., Seassal, C.: Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell. Opt. Express 18, A293–A299 (2010)

    Article  Google Scholar 

  5. Deckman, H.W., Wronski, C.R., Witzke, H., Yablonovitch, E.: Optically enhanced amorphous silicon solar cells. Appl. Phys. Lett. 42, 968–970 (1983)

    Article  CAS  Google Scholar 

  6. Grandidier, J., Callahan, D.M., Munday, J.N., Atwater, H.A.: Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE J. Photovolt. 2(2), 123–128 (2012)

    Article  Google Scholar 

  7. Li, B., Liu, J., Xu, G., Lu, R., Feng, L., Wu, J.: Development of pulsed laser deposition for CdS/CdTe thin film solar cells. Appl. Phys. Lett. 101, 153903 (2012)

    Article  Google Scholar 

  8. Carrington, P.J., Wagener, M.C., Botha, J.R., Sanchez, A.M., Krier, A.: Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells. Appl. Phys. Lett. 101, 231101 (2012)

    Article  Google Scholar 

  9. Cao, J., Zhan, Z., Hou, L., Long, Y., Liu, P., Mai, W.: Optical modeling of organic solar cells based on rubrene and C70. Appl. Opt. 51, 5718–5723 (2012)

    Article  CAS  Google Scholar 

  10. Shahrjerdi, D., Bedell, S.W., Ebert, C., Bayram, C., Hekmatshoar, B., Fogel, K., Lauro, P., Gaynes, M., Gokmen, T., Ott, J.A., Sadana, D.K.: High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology. Appl. Phys. Lett. 100, 053901 (2012)

    Article  Google Scholar 

  11. Imenes, A.G., Mills, D.R.: Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Sol. Energy Mater. Sol. Cells 84, 19–69 (2004)

    Article  CAS  Google Scholar 

  12. Polmanand, A., Atwater, H.A.: Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012)

    Article  Google Scholar 

  13. Chiao, S.C., Zhou, J.L., Macleod, H.A.: Optimized design of an antireflection coating for textured silicon solar cells. Appl. Opt. 32, 5557–5560 (1993)

    Article  CAS  Google Scholar 

  14. Dobrowolski, J.A., Poitras, D., Ma, P., Vakil, H., Acree, M.: Toward perfect antireflection coatings: numerical investigation. Appl. Opt. 41, 3075–3083 (2002)

    Article  CAS  Google Scholar 

  15. Singh, P., Sharma, S.N., Ravindra, N.M.: Applications of porous silicon thin films in solar cells and biosensors. JOM 62(6), 15–24 (2010)

    Article  CAS  Google Scholar 

  16. Xi, Z., Yang, D., Que, D.: Texturization of moncrystalline silicon with tribasic sodium phosphate. Sol. Energy Mater. Sol. Cells 77(3), 255–263 (2003)

    Article  CAS  Google Scholar 

  17. Iencinella, D., Centurioni, E., Rizzoli, R., Zignani, F.: An optimized texturing process for silicon solar cell substrates using TMAH. Sol. Energy Mater. Sol. Cells 87(1–4), 725–732 (2005)

    CAS  Google Scholar 

  18. Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A., Lemiti, M.: Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006)

    Article  CAS  Google Scholar 

  19. Hayashi, S., Minemoto, T., Takakura, H., Hamakawa, Y.: Influence of texture feature size on spherical silicon solar cells. Rare Metal 25(6), 115–120 (2006)

    Article  Google Scholar 

  20. Campbell, P., Green, M.A.: Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62(1), 243–249 (1987)

    Article  Google Scholar 

  21. Baker-Finch, S.C., Mclntosh, K.R.: Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011)

    Article  CAS  Google Scholar 

  22. Zhao, J., Wang, A., Altermatt, P.P., Wenham, S.R., Green, M.A.: 24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol. Energy Mater. Sol. Cells 41/42, 87–99 (1996)

    Article  CAS  Google Scholar 

  23. Zhao, J., Wang, A., Green, M.A., Ferrazza, F.: 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998)

    Article  CAS  Google Scholar 

  24. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B.A., Sulima, O., Rand, J.: Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117–233120 (2007)

    Article  Google Scholar 

  25. Lee, Y.C., Huang, C.F., Chang, J.Y., Wu, M.L.: Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Opt. Express 16(11), 7969–7975 (2008)

    Article  Google Scholar 

  26. Nakaya, H., Nishida, M., Takeda, Y., Moriuchi, S., Tonegawa, T., Machida, T., Nunoi, T.: Polycrystalline silicon solar cells with V-grooved surface. Sol. Energy Mater. Sol. Cells 34(1–4), 219–225 (1994)

    CAS  Google Scholar 

  27. Wang, X.D., Graugnard, E., King, J.S., Wang, Z.L., Summers, C.J.: Large-scale fabrication of ordered nanobowl arrays. Nano Lett. 4(11), 2223–2226 (2004)

    Article  CAS  Google Scholar 

  28. Leem, J.W., Joo, D.H., Yu, J.S.: Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells. Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011)

    Article  CAS  Google Scholar 

  29. Leem, J.W., Yu, J.S., Song, Y.M., Lee, Y.T.: Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles. Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011)

    Article  CAS  Google Scholar 

  30. Hamakawa, Y. (ed.): Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications. Springer, Berlin (2004)

    Google Scholar 

  31. Catchploe, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)

    Article  Google Scholar 

  32. Atwater, H.A., Polman, A.: Plamonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  CAS  Google Scholar 

  33. Yeh, Y.-M., Wang, Y.-S., Li, J.-H.: Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate. Opt. Express 19(S2), A80–A94 (2011)

    Article  CAS  Google Scholar 

  34. Yang, H.-Y., Chen, S.-W., Lin, I.-B., Li, J.-H.: Enhanced light trapping for the silver nanoparticles embedded in the silica layer atop the silicon substrate. Appl. Phys. A 112(3), 525–532 (2013)

    Article  CAS  Google Scholar 

  35. Dewan, R., Knipp, D.: Light trapping in thin-film silicon solar cells with integrated diffraction grating. J. Appl. Phys. 106(7), 074901–074907 (2009)

    Article  Google Scholar 

  36. Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.J., Flory, F., Mathian, G.: Improving light absorption inorganic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009)

    Article  CAS  Google Scholar 

  37. Yang, L., Xuan, Y., Tan, J.: Efficient optical absorption in thin-film solar cells. Opt. Express 19(S5), A1165–A1174 (2011)

    Article  CAS  Google Scholar 

  38. Vedraine, S., Torchio, P., Duche, D., Flory, F., Simon, J.J., LeRouzo, J., Escoubas, L.: Intrinsic absorption of plasmonic structures for organic solar cells. Sol. Energy Mater. Sol. Cells 95, S57–S64 (2011)

    Article  CAS  Google Scholar 

  39. Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21(34), 3504–3509 (2009)

    Article  CAS  Google Scholar 

  40. Yang, Y., Pillai, S., Mehrvarz, H., Kampwerth, H., Ho-Baillie, A., Green, M.A.: Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. Energy Mater. Sol. Cells 101, 217–226 (2012)

    Article  CAS  Google Scholar 

  41. Pillai, S., Beck, F.J., Catchpole, K.R., Ouyang, Z., Green, M.A.: The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J. Appl. Phys. 109(7), 073105 (2011)

    Article  Google Scholar 

  42. Xu, R., Wang, X., Liu, W., Song, L., Xu, X., Ji, A., Yang, F., Li, J.: Optimization of the dielectric layer thickness for surface-plasmon-induced light absorption for silicon solar cells. Jpn. J. Appl. Phys 51(4), 042301 (2012)

    Article  Google Scholar 

  43. Huang, C.K., Lin, H.H., Chen, J.Y., Sun, K.W., Chang, W.-L.: Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles. Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011)

    Article  CAS  Google Scholar 

  44. Matheu, P., Lim, S.H., Derkacs, D., McPheeters, C., Yu, E.T.: Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 93(11), 113108 (2008)

    Article  Google Scholar 

  45. Qu, D., Liu, F., Yu, J., Xie, W., Xu, Q., Li, X., Huang, Y.: Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl. Phys. Lett. 98(11), 113119 (2011)

    Article  Google Scholar 

  46. Akimov, Y.A., Koh, W.S.: Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1), 155–161 (2011)

    Article  CAS  Google Scholar 

  47. Brown, M.D., Suteewong, T., Kumar, R.S.S., D’Innocenzo, V., Petrozza, A., Lee, M.M., Wiesner, U., Snaith, H.J.: Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett. 11(2), 438–445 (2011)

    Article  CAS  Google Scholar 

  48. Yablonovitch, E.: Statistical ray optics. J. Opt. Soc. Am. 72(7), 899–907 (1982)

    Article  Google Scholar 

  49. Green, M.: Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002)

    Article  CAS  Google Scholar 

  50. Campbell, P., Green, M.A.: The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron Dev. ED-33(2), 234–239 (1986)

    Article  CAS  Google Scholar 

  51. Yu, Z., Raman, A., Fan, S.: Fundamental limit of light trapping in grating structures. Opt. Express 18(S3), A366–A380 (2010)

    Article  CAS  Google Scholar 

  52. Yu, Z., Raman, A., Fan, S.: Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. U.S.A. 107(41), 17491–17496 (2010)

    Article  CAS  Google Scholar 

  53. Callahan, D.M., Munday, J.N., Atwater, H.A.: Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012)

    Article  CAS  Google Scholar 

  54. Mokkapati, S., Catchpole, K.R.: Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012)

    Article  Google Scholar 

  55. Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010)

    Article  CAS  Google Scholar 

  56. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  CAS  Google Scholar 

  57. Kayes, B.M., Atwater, H.A., Lewis, N.S.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005)

    Article  Google Scholar 

  58. Chen, M.-C., Yang, Y.-L., Chen, S.-W., Li, J.-H., Aklilu, M., Tai, Y.: Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS Appl. Mater. Interfaces 5(3), 511–517 (2013)

    Article  Google Scholar 

  59. Cheng, H.-H., Chang, Y.-Y., Chu, J.-Y., Lin, D.-Z., Chen, Y.-P., Li, J.-H.: Light trapping enhancements of inverted pyramidal structures with the tips for silicon solar cells. Appl. Phys. Lett. 101, 141113 (2012)

    Article  Google Scholar 

  60. Lambda Research Corporation: http://lambdares.com/.

  61. Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)

    Book  Google Scholar 

  62. Reference solar spectral irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/.

  63. Lumerical FDTD Solution: http://www.lumerical.com/.

  64. Akimov, Y.A., Koh, W.S., Sian, S.Y., Ren, S.: Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles? Appl. Phys. Lett. 96(7), 073111 (2010)

    Article  Google Scholar 

  65. Vynck, K., Burresi, M., Riboli, F., Wiersma, D.S.: Photon management in two-dimensional disordered media. Nat. Mater. 11, 1017–1022 (2012)

    CAS  Google Scholar 

  66. Burresi, M., Pratesi, F., Vynck, K., Prasciolu, M., Tormen, M., Wiersma, D.S.: Two- dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption. Opt. Express 21(S2), A268–A275 (2013)

    Google Scholar 

  67. Li, J.-H., Chen S.-W., Wang, Y.-S., Yeh Y.-M.: Effect of nanoparticle distribution on light transmission through the silicon substrate. Proceeding of IQEC/CLEO Pacific Rim, pp. 2153–2154, Sydney, Australia, 28 August–1 September 2011.

    Google Scholar 

  68. Li, J.-H., Wang, S.-J., Chang, S.-P., Chang, Y.-M., Chen, S.-J.: Numerical and experimental study of optical properties of grana under different wavelength light. Plant Biol. 2010, Abstract # P14018, Montréal, Canada, 31 July–4 August, 2010.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Seed Project of NTU-ITRI Nano Center, National Science Council of Taiwan (NSC-96-2221-E-002-133-MY3, NSC-98-2120-M-002-004, NSC-100-2221-E-002-155), NTU Career Development Project (10R70816, 101R7816), and Tzong Jwo Jang Educational Foundation (97-S-A10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Han Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, HH. et al. (2014). Light Trapping for Solar Cells. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_14

Download citation

Publish with us

Policies and ethics