Skip to main content

Atmospheric Radiation

  • Chapter
  • First Online:
Lectures in Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter covers the nomenclature and basic quantities used in meteorology to describe the atmospheric radiation processes. The principle of blackbody radiation, shortwave and long-wave radiation are applied to the atmosphere. The basics of the interaction radiation-atmosphere and the radiative transfer are presented. The radiative transfer equation including the solution for a plane-parallel non-scattering atmosphere are discussed. Finally the concepts are applied to the global radiation and surface energy budgets and discussed in view of climate. The chapter also covers remote sensing applications from satellites and the greenhouse effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Think of a fork put at one end in a grill fire. It will get hot on the other one.

  2. 2.

    For example boiling water in a pot.

  3. 3.

    Max Karl Ernst Planck, German physicist, 1858–1947.

  4. 4.

    NaCl, for instance, when put into a flame emits yellow light.

  5. 5.

    X-rays, for example, have an extremely short wavelengths (Table 4.1) and can be used to detect broken bones as the waves can travel through tissue. Compared to X-rays, ordinary light has longer wavelengths and is absorbed by the skin.

  6. 6.

    Correctly spoken, the orbit of the barycenter of the Earth-Moon system.

  7. 7.

    Gustav Robert Kirchoff, German physicist, 1824–1887.

  8. 8.

    Wilhelm Karl Werner Wien, German physicist 1864–1928.

  9. 9.

    The reader is referred to the paper of Kramm and Herbert (2006) in which these radiation laws are derived using principles of dimensional analysis and discussed.

  10. 10.

    Lord Rayleigh (John William Strutt), English mathematician and physicist, 1842–1919.

  11. 11.

    Louis Carl Heinrich Friedrich Paschen, German physicist, 1865–1947.

  12. 12.

    Ludwig Eduard Boltzmann, Austrian physicist, 1844–1906.

  13. 13.

    Paul Ehrenfest, Austrian and Dutch physicist, 1880–1953.

  14. 14.

    Think of a stove that is black as it is cold and turns to red as it gets hot.

  15. 15.

    Josef Stefan, Austrian physicist, 1835–1893.

  16. 16.

    The value of this constant is easy to remember: know that it begins with 5, count to 8, and keep in mind that there are digits after the 5, a minus before the 8, and a 10 in between.

  17. 17.

    Hotter bodies emit more energy than cooler ones.

  18. 18.

    Gustav Adolf Ludwig Mie, German physicist, 1868–1957.

  19. 19.

    James Clerk Maxwell, British physicist, 1831–1879.

  20. 20.

    The reader is referred to Liou’s textbook.

  21. 21.

    Chandrasekhara Venkata Raman, Indian physicists, 1888–1970.

  22. 22.

    A paved parking lot, for instance, is a specular reflector in the radio part of the spectrum, but a diffuse reflector in visible part.

  23. 23.

    See reference list for suggestions.

  24. 24.

    Christian Andreas Doppler, Austrian physicist, 1803–1853.

  25. 25.

    Hendrik Lorentz, Nobel Price Laureate in 1902 with Pieter Zeeman, Dutch physicist, 1853–1928.

  26. 26.

    Woldemar Voigt, German physicist, 1850–1919.

  27. 27.

    Albert Einstein, German-American physicist, 1879–1955.

  28. 28.

    Edward Arthur Milne, British astrophysicist, 1896–1950.

  29. 29.

    Paul Adrien Maurice Dirac, British physicist, 1902–1984.

  30. 30.

    Richard Chace Tolman, American physical chemist, 1881–1948.

  31. 31.

    The reader is referred, for instance, to the textbook of Kidder and Vonder Haar (1995).

  32. 32.

    Be aware of the fact that the following values of the units slightly vary from author to author. These values just intend to assess the processes relative to each other.

  33. 33.

    Remind yourself of the difference in walking over grass and dark, dry bare soil or the difference in walking over black dry and black wet sand at a beach on a hot summer day.

  34. 34.

    Greenhouses are more effective because they inhibit convection than they are because they trap radiation. Thus, the comparison to a greenhouse is somehow awkward.

  35. 35.

    Aristarchus was the first to determine this distance in 250 BC.

  36. 36.

    Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

References

Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

  • Andrews DG (2000) Introduction to atmospheric physics. Cambridge University Press, New York, 237pp

    Book  Google Scholar 

  • Bohren CF, Clothiaux EE (2006) Fundamentals of atmospheric radiation. Wiley-VCH, Berlin, 490pp

    Book  Google Scholar 

  • Bruno TJ, Svoronos P (2004) Handbook of basic tables for chemical analysis, 2nd edn. CRC Press, Boca Raton, 223pp

    Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover, New York, 393pp

    Google Scholar 

  • Coulson (1975) Solar and terrestrial radiation: methods and measurements. Academic, New York/San Francisco, 322pp

    Google Scholar 

  • Dingman SL (1994) Physical hydrology. Macmillan, New York/Oxford/Singapore/Sydney, 557pp

    Google Scholar 

  • Dirac PAM (1927) The quantum theory of the emission and absorption of radiation. Proc R Soc A114:243–267

    Article  Google Scholar 

  • Döring F (1973) Atomphysik und Quantenmechanik: I. Grundlagen. de Gruyter, Berlin/New York, 389pp

    Google Scholar 

  • Einstein A (1917) Zur Quantentheorie der Strahlung. Physikalische Zeitschrift XVIII:121–128

    Google Scholar 

  • Einstein A, Ehrenfest P (1923) Zur Quantentheorie des Strahlungsgleichgewichts. Zeitschrift für Physik A Hadrons and Nuclei 19:301–306

    Google Scholar 

  • Finkelstein RJ (1969) Thermodynamics and statistical physics. W.H. Freeman, San Francisco, 113pp

    Google Scholar 

  • Foken T (2014) Micrometeorology (Translated by Nappo, C.J.). Springer, Heidelberg, 350pp

    Google Scholar 

  • Fowler RH, Milne EA (1925) A note on the principle of detailed balancing. Proc Natl Acad Sci 11:400–402

    Article  Google Scholar 

  • Franck J, Hertz G (1914) Ãœber Zusammenstös̈e zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben. Verh Dtsch Phys Ges 16:457–467

    Google Scholar 

  • Goody RM, Yung YL (1989) Atmospheric radiation: theoretical basis. Oxford University Press, New York/Oxford, 501pp

    Google Scholar 

  • Haltiner GJ, Martin FL (1957) Dynamical and physical meteorology. McGraw-Hill, New York/Toronto/London, 470pp

    Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York, 101pp

    Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 656pp

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 813pp

    Book  Google Scholar 

  • Kasten F, Raschke E (1974) Reflection and transmission terminology by analogy with scattering. Appl Opt 13:450–464

    Article  Google Scholar 

  • Kidder SQ, Vonder Haar TH (1995) Satellite meteorology. Academic, San Diego, 466pp

    Google Scholar 

  • Klein O, Rosseland S (1921) Ãœber Zusammenstös̈e zwischen Atomen und freien Elektronen. Zeitschr Phys A Hadrons and Nuclei 4:46–51

    Google Scholar 

  • Kondratyev KYA (1969) Radiation in the atmosphere. Academic, New York/London, 912pp

    Google Scholar 

  • Kramm G, Dlugi R (2011) Scrutinizing the atmospheric greenhouse effect and its climatic impact. Nat Sci 3:971–998

    Google Scholar 

  • Kramm G, Herbert F (2006) Heuristic derivation of blackbody radiation laws using principles of dimensional analysis. J Calcutta Math Soc 2:1–20

    Google Scholar 

  • Kramm G, Meixner FX (2000) On the dispersion of trace species in the atmospheric boundary layer: a re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus A 52:500–522

    Article  Google Scholar 

  • Kramm G, Mölders N (2009) Planck’s blackbody radiation law: presentation in different domains and determination of the related dimensional constants. J Calcutta Math Soc 5:37–61

    Google Scholar 

  • Kramm G, Beier N, Foken T, Müller H, Schröder P, Seiler W (1996) A SVAT scheme for NO, NO 2, and O 3 – model description and test results. Meteorol Atmos Phys 61:89–106

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics. Course of theoretical physics, vol 5. Pergamon Press, Oxford/New York/Toronto/Sydney/Paris/Frankfurt, 484pp

    Google Scholar 

  • Liou K-N (1980) An introduction to atmospheric radiation. Academic, San Diego/ New York/Boston/London/Sydney/Tokyo/Toronto, 432pp

    Google Scholar 

  • Liou K-N (2002) An introduction to atmospheric radiation, 2nd edn. Academic, San Diego, 583pp

    Google Scholar 

  • Lutgen FK, Tarbuck EJ (2001) The atmosphere – an introduction to meteorology. Pearson, Boston, 506pp

    Google Scholar 

  • Milne EA (1928) The effect of collisions on monochromatic radiative equilibrium. MNRAS 88:493–502

    Google Scholar 

  • Modest MF (2003) Radiative heat transfer. Academic, Amsterdam/Boston/London/ New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo, 822pp

    Google Scholar 

  • Mölders N (1987) Wolkenerkennung in AVHRR Daten mit besonderer Berücksichtigung der Gebiete über der Arktis. M.S. Thesis, Institut für Geophysik und Meteorologie, Universität zu Köln, 81pp

    Google Scholar 

  • Mölders N, Laube M, Raschke E (1995) Evaluation of model generated cloud cover by means of satellite data. Atmos Res 39:91–111

    Article  Google Scholar 

  • Mölders N, Haferkorn U, Döring J, Kramm G (2003a) Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS) – part I: description of the model and impact of long-wave radiation, roots, snow, and soil frost. Meteorol Atmos Phys 84:115–135

    Article  Google Scholar 

  • Mölders N, Haferkorn U, Döring J, Kramm G (2003b) Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS) – part II: evaluation, sensitivity, and uncertainty. Meteorol Atmos Phys 84:137–156

    Article  Google Scholar 

  • Mölders N, Luijting H, Sassen K (2008) Use of atmospheric radiation measurement program data from Barrow, Alaska, for evaluation and development of snow albedo parameterizations. Meteorol Atmos Phys 99:199–219

    Article  Google Scholar 

  • Mölders N (2011/2012) Land-use and land-cover changes – Impact on climate and air quality. Atmospheric and oceanographic sciences library, vol 44. Springer, Dordrecht, 189pp. doi:10.1007/978-94-007-1527-1 3

    Google Scholar 

  • Möller F (1973) Einführung in die Meteorologie – Physik der Atmosphäre – Band 1. BI Hochschultaschenbücher, Mannheim, 222pp

    Google Scholar 

  • Moore WJ (1986) Physikalische Chemie (Hummel DO (ed)). Walter de Gruyter, Berlin/New York, 1236pp

    Book  Google Scholar 

  • Pais A (1995) Introducing atoms and their nuclei. In: Brown LM, Pais A, Pippard B (eds) Twentieth century physics – vol I. Institute of Physics Publishing, Bristol/Philadelphia/American Institute of Physics Press, New York, pp 43–141

    Chapter  Google Scholar 

  • Peixto JP, Oort AH (1992) Physics of climate. Springer, New York, 520pp

    Google Scholar 

  • Petty GW (2004) A first course in atmospheric radiation. Sundog Publishing, Madison, 458pp

    Google Scholar 

  • Pielke RA (1984) Mesoscale meteorological modeling. Academic, London, 612pp

    Google Scholar 

  • Salby ML (1996) Atmospheric physics. Academic, San Diego/New York/Boston/London/Sydney/ Tokyo/Toronto, 627pp

    Google Scholar 

  • Standish EM, Williams EM (1992) Orbital ephemerides of the Sun, Moon, and planets. Updated version (unpublished) of Standish EM, Newhall XX, Williams JG, Yeomans DK (eds) Orbital ephemerides of the sun, moon and planets. Explanatory Supplement to the Astronomical Almanac. University Books, Mill Valley, pp 279–374

    Google Scholar 

  • Semat H, Albright JR (1972) Introduction to atomic and nuclear physics. Holt, Rinehart, Winston, New York, 670 pp

    Google Scholar 

  • Tolman RC (1925) The principle of microscopic reversibility. Proc Natl Acad Sci 11:436–439

    Article  Google Scholar 

  • Vardavas IM, Taylor FW (2007) Radiation and climate. Oxford University Press, Oxford, 512pp

    Book  Google Scholar 

  • Wallace JM, Hobbs PV (1977) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 467pp

    Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 483pp

    Google Scholar 

  • Wayne RP (1985) Chemistry of atmospheres – an introduction to the chemistry of the atmospheres of Earth, the planets, and their satellites. Clarendon Press, Oxford, 361pp

    Google Scholar 

  • Wendisch M, Yang P (2012) Theory of atmospheric radiative transfer. Wiley VCH, Weilheim, 311pp

    Google Scholar 

  • Williams DR (2007) Mars fact sheet. National Space Science Data Center. NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.htmlRetrieved2007

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mölders, N., Kramm, G. (2014). Atmospheric Radiation. In: Lectures in Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02144-7_4

Download citation

Publish with us

Policies and ethics