Skip to main content

Heterogeneous and Homogeneous Crystallization of Soft Spheres in Suspension

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

Nucleation, i.e., the onset of a phase transition like crystal growth, is a rare event with waiting times in the order of days. Yet, it is an event on the molecular scale, and therefore difficult to study, both experimentally and by computer simulations. Our interest is in the role of long range interactions in nucleation, in particular electrostatic and hydrodynamic interactions mediated by solvent molecules. In order to model the solvent, we use a lattice fluid that is propagated by the fluctuating Lattice Boltzmann (LB) method. Our implementation uses a graphics card (GPU) to propagate the solvent and is coupled to the Molecular Dynamics (MD) simulation package ESPResSo. Using this code, we study the heterogeneous crystallization in Yukawa-like colloidal systems. Our simulations allow to observe the growth of a crystal in a channel with and without hydrodynamic interactions, and indicate that hydrodynamic interactions slow down the crystallization. Additionally, we present results on the homogeneous crystallization of Yukawa particles. While heterogeneous nucleation can be observed directly in simulations, homogeneous nucleation requires special sampling techniques. We use our own Forward Flux Sampling implementation, the Flexible Rare Event Sampling Harness Systems (FRESHS). FRESHS can control popular MD simulation packages as back-end, making it a versatile tool to study rare events. Our simulations confirm previous results at higher supersaturations, which show that the nucleation mechanism involves two steps, namely the formation of a metastable bcc phase and the transformation to a stable fcc phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comp. Phys. Commun. 174(9), 704 (2006)

    Article  Google Scholar 

  2. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 89 (Springer, Berlin, 2013), pp.  1–23, http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-642-32978-4

  3. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008)

    Article  Google Scholar 

  4. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  MATH  Google Scholar 

  5. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)

    MATH  Google Scholar 

  6. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94(3), 511 (1954)

    Article  MATH  Google Scholar 

  7. D. d’Humieres, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 360(1792), 437 (2002)

    Google Scholar 

  8. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 9(8), 1429 (1998)

    Article  Google Scholar 

  10. B. Dünweg, A.J.C. Ladd, in Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, vol. 221 (Springer, Berlin, 2009), pp. 89–166. doi:10.1007/12_2008_4

    Google Scholar 

  11. W. Li, X. Wei, A. Kaufman, Vis. Comput. 19(7), 444 (2003)

    Google Scholar 

  12. NVIDIA Corporation, Getting Started, NVIDIA CUDA Development Tools 3.2 Installation and Verification on Linux (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  13. NVIDIA Corporation, NVIDIA CUDA C Programming Guide Version 3.2 (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  14. J. Myre, S. Walsh, D. Lilja, M. Saar, Concurr. Comput. 23(4), 332 (2011)

    Article  Google Scholar 

  15. M.A. Safi, M. Ashrafizaadeh, A.A. Ashrafizaadeh, in International Conference on Fluid Mechanics, Heat Transfer, and Thermodynamics, vol. 73 (World Academy of Science, Engineering and Technology, Las Cruces, 2011), pp. 875–882

    Google Scholar 

  16. C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Rüde, J. Comput. Sci. 2, 105–112 (2011)

    Google Scholar 

  17. MPI Consortium. The Message Passing Interface (MPI) Standard (2004), http://www.mcs.anl.gov/research/projects/mpi/Homepage

  18. NVIDIA Corporation, NVIDIA CUDA Reference Manual Version 3.2 (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  19. T.S. van Erp, D. Moroni, P.G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)

    Article  Google Scholar 

  20. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006)

    Article  Google Scholar 

  21. R.J. Allen, C. Valeriani, P.R. ten Wolde, J. Phys. Condens. Matter 21(46), 463102 (2009)

    Article  Google Scholar 

  22. F.A. Escobedo, E.E. Borrero, J.C. Araque, J. Phys. Condens. Matter 21(33), 333101 (2009)

    Article  Google Scholar 

  23. R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)

    Article  Google Scholar 

  24. K. Kratzer, A. Arnold, R.J. Allen, J. Chem. Phys. 138(16), 164112 (2013)

    Article  Google Scholar 

  25. E.E. Borrero, F.A. Escobedo, J. Chem. Phys. 129(2), 024115 (2008)

    Article  Google Scholar 

  26. E. Hinch, J. Fluid Mech. 72, 499 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Steinhardt, D. Nelson, M. Ronchetti, Phys. Rev. B 28(2), 784 (1983)

    Article  Google Scholar 

  28. D. Moroni, P. Ten Wolde, P. Bolhuis, Phys. Rev. Lett. 94(23), 235703 (2005)

    Article  Google Scholar 

  29. W. Lechner, C. Dellago, arXiv preprint arXiv:0806.3345 (2008)

    Google Scholar 

  30. S. Hamaguchi, R. Farouki, D. Dubin, J. Chem. Phys. 105, 7641 (1996)

    Article  Google Scholar 

  31. S. Auer, D. Frenkel, J. Phys. Condens. Matter 14(33), 7667 (2002)

    Article  Google Scholar 

  32. E. Sanz, C. Valeriani, D. Frenkel, M. Dijkstra, Phys. Rev. Lett. 99, 055501 (2007)

    Article  Google Scholar 

  33. F.E. Azhar, M. Baus, J.P. Ryckaert, E.J. Meijer, J. Chem. Phys. 112(11), 5121 (2000)

    Article  Google Scholar 

  34. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Roehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Roehm, D., Kratzer, K., Arnold, A. (2013). Heterogeneous and Homogeneous Crystallization of Soft Spheres in Suspension. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_3

Download citation

Publish with us

Policies and ethics