Skip to main content

Biological Properties of Forest Soils

  • Chapter
  • First Online:
Forest Soils
  • 2320 Accesses

Abstract

Many organisms, both macro- and micro- flora and fauna, live in the forest floor and mineral layers of the forest soil. Macrofloras include plant roots, which function in water storage, drainage, aeration, and nutrient cycling in soil by their proliferation, death, and decay. In addition, microfloras influence biological and biochemical environment of the soil by their rhizoplane and rhizosphere effects. Soil microflora includes algae, bacteria, and fungi, which act on organic matter and mineral transformations. Organic matter decomposition, humification, mineralization, nitrification, denitrification, nitrogen fixation, etc., are some of the important transformations mediated by forest soil microflora. Forest soil harbors plenty of macro-, meso-, and microfauna, including rotifers, nematodes, protozoa, acari, collembolan, protura, diplura, symphyla, enchytraedae, isoptera, opiliones, isopoda, amphipoda, chilopoda, diplopoda, megadrili, coleoptera, mollusca, earthworms, etc. Soil faunas fragment litters and mix them with the mineral soils through their burrows. They regulate the structure and composition of soil biotic communities and their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele SE (2010) Gastropod diversity in the boreal mixedwood forest of northern Alberta-variation among forest types and response to partial harvesting. MS Thesis, University of Alberta, Edmonton

    Google Scholar 

  • Abrahamsen G (1972) Ecological study of Enchytraeidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobiologia 12:26–82

    Google Scholar 

  • Adis J (2002) Taxonomical classification and biodiversity. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft Publishers, Sofia

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology 2nd edn. Academic Press, New York

    Google Scholar 

  • Anichkin AE, Belyaeva NV, Dovgobrod IG, Shveenkova YB, Tiunov AV (2007) Soil microarthropods and macrofauna in monsoon tropical forests of Cat Tien and Bi Dup-Nui Ba National parks, southern Vietnam. Biology bulletin 34(5):498

    Google Scholar 

  • Balachandar D, Raja P, Kumar K, Sundaram SP (2007) Non-rhizobial nodulation in legumes. Biotechnology and molecular biology review 2(2):49–57

    Google Scholar 

  • Barker GM, Mayhill PC (1999) Patterns of diversity and habitat relationships in terrestrial mollusc communities of the Pukeamaru ecological district, northeastern New Zealand. J Biogeogr 26:215–238

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along corn (maize) roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Baxter PF, Hole H (1967) Ant (Formica cinerea) pedoturbation in a prairie soil. Soil science society of America proceedings 31:425–428

    Google Scholar 

  • Beare MH, Reddy MV, Tian G, Scrivasta SC (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota. Applied Soil Biology 6:87–108

    Google Scholar 

  • Benizri E, Dedourge O, Di Battista-Leboeuf C, Nguyen CS, Piutti GA (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl Soil Ecol 21:261–265

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    PubMed  CAS  Google Scholar 

  • Black HIJ, Okwakol MJN (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota. Applied Soil Biology 6:37–53

    Google Scholar 

  • Bohlen PJ, Pelletier D, Groffman PM, Fahey TJ, Fisk MC (2004) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27

    CAS  Google Scholar 

  • Boycott AE (1934) The habitats of land mollusca in Britain. J Ecol 22:1–38

    Google Scholar 

  • Brunner A, Kimmins JP (2003) Nitrogen-fixation in coarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver Island. Can J For Res 33:1670–1682

    CAS  Google Scholar 

  • Brussaard L, Jumas NG (1996) Organisms and humus in soils. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Brussard L, Hauser S, Tian G (1993) Soil fauna activity in relation to the sustainability of agricultural systems in the humid tropics. In: Mulongoy K, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. A Wiley-Sayce co-publication

    Google Scholar 

  • Burch JB, Pearce TA (1990) Terrestrial Gastropoda. Soil Biology Guide. Wiley , New York

    Google Scholar 

  • Chalupsky J (1991) Comprehensive guide to the enchytraeid taxonomy. The Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Cherrett JM (1989) Leaf-cutting ants: biogeographical, and ecological studies. In: Leith H, Werger MJ (eds) Ecosystems of the World: Tropical Rainforest Ecosystem. Elsevier, New York

    Google Scholar 

  • Christensen B (1964) Regeneration of a new anterior end in Enchytraeus bigeminus (Enchytraeidae, Oligochaeta). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjøbenhavn

    Google Scholar 

  • Clark FE (1949) Soil microorganisms and plant roots. Adv Agron 1:241–288

    CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fischer H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Fisher JCV, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    CAS  Google Scholar 

  • Coleman DC, Crossley DA (1996) Fundamentals of soil ecology. Academic Press, London

    Google Scholar 

  • Crawford RH, Li CY, Floyd M (1997) Nitrogen-fixation in root-colonized large woody residue of Oregon coastal forests. For Ecol Manag 92:229–234

    Google Scholar 

  • Crossley DA, Mueller BR, Perdue JC (1992) Biodiversity of microarthropod in agricultural soils: relations to processes. Agriculture. Ecosystems Environment 40:37–46

    Google Scholar 

  • David JF, Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews 85:881–895

    PubMed  Google Scholar 

  • Devliegher W, Verstraete W (1997) The effect of Lumbricus terrestris on soil in relation to plant growth: effects of nutrient enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol Biochem 29:341–346

    CAS  Google Scholar 

  • Didden WAM (1993) Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29

    Google Scholar 

  • Donner J (1965) Ordnung Bdelloidea (Rotatoria). Akademie Verlag, Berlin

    Google Scholar 

  • Dozsa-Farkas K (1977) Beobachtungen über die Trockenheitstoleranze von Fridericia galba (Oligochaets, Enchytraeidea). Opuscula Zoologica Budapest 14:77–83

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. 3rd edn. Chapman and Hall, London

    Google Scholar 

  • FAO (2008) Soil macrofauna field manual technical level. Food and agriculture organization of the United Nations, Rome

    Google Scholar 

  • Feldman LJ (1988) The habits of roots. BioScience 38(9):612–618

    PubMed  CAS  Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. In: Alexander M (ed) Advances in Microbial Ecology. Plenum Press, New York

    Google Scholar 

  • Fontaneto D, Melone G (2003) On some rotifers new for the Italian fauna. Ital J Zool 70:253–259

    Google Scholar 

  • Foth HD (1990) Fundamentals of soil science, 8th edn. Wiley, New York

    Google Scholar 

  • Fragoso C, Barois I, Gonzales C, Arteaga C, Patron JC (1993) Relationship between earthworms and soil organic matter levels in natural and managed ecosystems in the Mexican tropics. In: Mulongoy K, Mecchx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley, Chichester, UK

    Google Scholar 

  • Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insect Soc 42:167–185

    Google Scholar 

  • Giri B, Giang PH, Kumari R, Sachdev RM, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Soil biology, Volume 3. microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin

    Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX (2004) Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol Control 29:66–72

    Google Scholar 

  • Gupta R, Mukerji KG (2002) Root exudate-biology. In: Mukerji KG, Manaharachary C, Chamola BP (eds) Techniques in mychorrhizal studies. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Haarløv N (1960): Microarthropods from Danish soils: ecology, phenology. Oikos Supplement 3:1–176

    Google Scholar 

  • Hafkenscheid RLLJ (2000) Hydrology and biochemistry of tropical montane rainforests of contrasting stature in the blue mountains, Jamaica. Ph.D. Thesis, Faculty of Earth sciences, Vrije Universiteit, Amsterdam

    Google Scholar 

  • Han HS Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1(3):210–215

    Google Scholar 

  • Hassall M, Turner JG, Rands MRW (1987) Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 72:597–604

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of diversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Google Scholar 

  • Hendrickson OQ, Burgess D (1989) Nitrogen-fixing plants in a cut-over lodgepole pine stand of southern British Columbia. Can J For Res 19:936–939

    Google Scholar 

  • Hicks WT, Harmon ME, Myrold DD (2003) Substrate controls on nitrogen fixation and respiration in woody debris from the Pacific Northwest, USA. Forest Ecol Manage 176:25–36

    Google Scholar 

  • Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, Oxford

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Google Scholar 

  • Ingham ER (1995) Soil organisms, bacteria, fungi, protozoa, nematodes and rotifers. Interior Columbia Basin Ecosystem Management Project Report

    Google Scholar 

  • Irmler U (2000) Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia 44:105–118

    Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen jixation research and application. Plant Soil 141:197–209

    CAS  Google Scholar 

  • Ito M (1995) Taxonomic study on the Eutardigrada from the northern slope of Mt. Fuji, central Japan, II. Family Hypsibiidae. Proc Japan Soc Syst Zool 53:18–39

    Google Scholar 

  • Janzen HH, Bettany JR (1987) Measurement of sulfur oxidation in soils. Soil Sci 143:444–452

    CAS  Google Scholar 

  • Jetten MSM, Logemann S, Muyzer G, Robertson LA, de Vries S , van Loosdrecht MCM, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek 71:75–93

    PubMed  CAS  Google Scholar 

  • Jhonson C (2009) Biology of soil science. Oxford Book Company, Jaipur, India

    Google Scholar 

  • Jorgenson BB (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar Biol 41:7–17

    Google Scholar 

  • Jurgensen MF, Tonn JR, Graham RT, Harvey AE, Geier-Hayes K (1991) Nitrogen-fixation in forest soils of the Inland Northwest. Proceedings-Management and Productivity of Western-Montane Forest Soils USDA FS Gen Tech Rep INT–280

    Google Scholar 

  • Jurgensen MF, Harvey AE, Graham RT, Page-Dumroese DS, Tonn JR, Larsen MJ, Jain TB (1997) Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of Inland Northwest forests. Forest Science 43:234–251

    Google Scholar 

  • Karppinen E (1958) Ober die Oribatiden (Acar) der finnischen WaldbSden. Ann. Zool. Soc. Vanamo 19:1–43

    Google Scholar 

  • Kennedy IR (1986) Acid soil and acid rain: The impact on the environment of nitrogen and sulphur cycling. Wiley. New York

    Google Scholar 

  • Lavelle P, Spain AV, Blanchart E, Martin A, Martin PS (1992) Impact of soil fauna on the properties of soils in the humid tropics. In: Sanchez PA, Lal R (eds) Myths and Science of soils in the tropics. Soil Science Society of America, Special publication. No. 29, Madison, Wisconsin

    Google Scholar 

  • Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biology International 33:3–16

    Google Scholar 

  • Lavelle P, Bignell DE, Lepage M (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33:159–193

    CAS  Google Scholar 

  • Lavelle P, Pashanasi B, Charpentier F, Gilot C, Rossi JP, Derouard L, Andre J, Ponge JF, Bernier N (1998) Large-scale effects of earthworms on soil organic matter and nutrient dynamics. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Boca Raton

    Google Scholar 

  • Lavelle P, Spain AV (2003) Soil ecology. Kluwer Academic Publishers, New York

    Google Scholar 

  • Lee KE, Foster RC (1991) Soil fauna and structure. Aust J Soil Res 9:754–760

    Google Scholar 

  • Lettl A, Langkramer O, Lochman V (1981) Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests. Folia Microbiologica 26(1):24–28

    PubMed  CAS  Google Scholar 

  • Linden DR, Hendrix PF, Coleman DC, Petra CJ, van Vliet (1994) Faunal indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for sustainable environment. SSSA Special Publication, No. 35

    Google Scholar 

  • Lloyd D, Boddy L, Davies KJP (1987) Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than exception. FEMS Microbiol Ecol 45:185–190

    CAS  Google Scholar 

  • Lousier JD, Bamforth SS (1990) Soil protozoa. In: Dindal D (ed) Soil biology guide. Wiley, New York

    Google Scholar 

  • Lynch JM (1987) Microbial interactions in the rhizosphere. Soil microorganisms 30:33–41

    Google Scholar 

  • Lynch JM (1990) The Rhizosphere. Wiley, New York

    Google Scholar 

  • Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482

    Google Scholar 

  • Martikainen PJ, Palojarvi A (1990) Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology and. BioChemistry 22:797–802

    CAS  Google Scholar 

  • Mason CF (1970) Snail populations, beech litter production, and the role of snails in litter decomposition. Oecologia 5:215–239

    Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    CAS  Google Scholar 

  • Miller EK, Johnson AH, Vann DR, Joshi AB (2003) Nitrogen availability and forest productivity along a climosequence on Whiteface Mountain, New York. Can J For Res 33:1880–1891

    Google Scholar 

  • Mitchell MJ, Fuller RD (1988) Models of sulfur dynamics in forest and grassland ecosystems with emphasis on soil processes. Biogeochemistry 5:133–163

    CAS  Google Scholar 

  • Moldenke AR (1990) One hundred twenty thousand little legs. Essays onInvertebrate Conservation, The Xerces Society. Wings (Summer): 11–14

    Google Scholar 

  • Moldenke AR, Lattin JD (1990) Density and diversity of soil arthropods as "biological robes’ of complex soil phenomena. Northwest Environ J 6(2):409–410

    Google Scholar 

  • Montagnini F, Buschbacher R (1989) Nitrification rates in two undisturbed tropical rain forests and three slash-and-burn sites of the Venezuelan Amazon. Biotropica 21:9–14

    Google Scholar 

  • Moritz M (1965) Untersuchungen tiber den EinfluB von KahlschlagmaBnahmen auf die Zusammensetzung von Hornmilbengemeinschaften (Acari: Oribatei) norddeutscher Laubund Kiefernmischw~ilder. Pedobiologia 5:65–101

    Google Scholar 

  • Mulongoy K, Bedoret A (1989) Properties of worm castes and surface soils under various plant covers in the humid tropics. Soil Biology and. BioChemistry 21:197–203

    Google Scholar 

  • Nannipieri P, Badalucco L (2003) Biological processes In: Bembi DK, Nieder R (eds) Processes in the soil-plant system: modelling concepts and applications. The Haworth Press, Binghamton, NY

    Google Scholar 

  • Nash MH, Whitford WG (1995) Subterranean termites: regulators of soil organic matter in the Chihuaharan desert. Biol Fertil Soils 19:15–18

    Google Scholar 

  • Nasholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    CAS  Google Scholar 

  • Nature E (2012) Soil, Agriculture, and Agricultural Biotechnology http://www.nature.com/scitable/knowledge/library/the-soil-biota-84078125

  • Neill C, Piccolo MC, Cerri CC, Steudler PA, Melillo JM, Brito M (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110:243 -252

    Google Scholar 

  • Nekola JC (2002) Effects of fire management on the richness and abundance of central North American grassland land snail faunas. Animal biodiversity and conservation 25: 53–66

    Google Scholar 

  • Nelson DR (2002) Current status of the Tardigrada: evolution and ecology. Integr Comp Biol 42(3):652–659

    PubMed  Google Scholar 

  • Neptune AML, Tabatabai MA, Hanaway JJ (1975) Sulfur fractions and carbon-nitrogen-phosphorussulfur relationships in some Brazilian and Iowa soils. Soil Sci Soc Am Proc 39:51–55

    CAS  Google Scholar 

  • Nommik H (1982) Nitrogen cycling, leaching and denitrification in forest soils. Second National symposium on biological nitrogen fixation, Helsinki

    Google Scholar 

  • Nosek J, Vysotskaya SO (1976): Study of Protura from the nests of small mammals of Transkarpathian region. Entomologicheskoe Obozrenie 55: 808–812

    Google Scholar 

  • Nosek J (1977): Proturan synusies and niche separation in the soil. Ecological Bullentins 25: 138–142

    Google Scholar 

  • Nugroho RA, Roling WFM, Laverman AM, Verhoef HA (2007) Low nitrification rates in acid Scots pine forest soils are due to pH related factors. Microb Ecol 53:89–97

    PubMed  CAS  Google Scholar 

  • Nurminen M (1965) Enchytraeid and lumbricid records (Oligochaeta) from Spitsbergen. Enchytraeids (Oligochaeta) from northern Norway and western Lapland. Priliminary notes on the Enchytraeids (Oligochaeta) of the Ahvenanmaa Island, South Finland. Ann Zool Fenn 2:1–17

    Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    CAS  Google Scholar 

  • Pearce TA (1997) Interference and resource competition in two land snails: adults inhibit conspecific juvenile growth in field and laboratory. Journal of Molluscan Studies 63:389–399

    Google Scholar 

  • Perakis SS, Sinkhorn ER (2011) Biogeochemistry of a temperate forest nitrogen gradient. Ecology 92(7):1481–1491

    PubMed  Google Scholar 

  • Persson T, Wiren A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 168-169:55–65

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388

    Google Scholar 

  • Pourriot R (1979) Rotiferes du sol. Rev Ecol Biol Sol 16:279–312

    Google Scholar 

  • Pregitzer KS, Burton AJ, Mroz GD, Liechty HO, MacDonald NW (1992) Foliar sulfur and nitrogen along a 800-km pollution gradient. Can J For Res 22:1761–1769

    CAS  Google Scholar 

  • Ricci C, Balsamo M (2000) The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biol 44:15–28

    Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446:1–11

    Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformation. In: Paul EA (ed) Soil microbiology, biochemistry, and ecology. Springer, New York

    Google Scholar 

  • Rusek J (1986) Soil microstructures: contributions of specific soil organisms. Quaestiones Entomologicae 21:497–514

    Google Scholar 

  • Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia 34(5):299–314

    Google Scholar 

  • Setala H, Hubta V (1991) Soil fauna increase Betula pendula growth: Laboratory experiments with coniferous forest floor. Ecology 72(2):665–671

    Google Scholar 

  • Shelley RM (2002) A revised, annotated, family-level classification of the Diplopoda. Arthropoda Selecta 11(3):187–207

    Google Scholar 

  • Shelley RM (2007) Taxonomy of extant Diplopoda (millipeds) in the modern era: Perspectives for future advancements and observations on the global diplopod community (Arthropoda: Diplopoda). Zootaxa 1668: 343–362

    Google Scholar 

  • Shiferaw B, Bantilan MCS, Serraj R (2004) Harnessing the potential of BNF for poor farmers: technological policy and institutionalconstraints and research need. In: Serraj R (ed) Symbiotic nitrogen fixation; prospects for enhanced application in tropical agriculture. Oxford & IBH, New Delhi

    Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Myidantcorrhizae: An overview. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Berlin

    Google Scholar 

  • Siepel H (1996) Biodiversity of soil microarthropods: the filtering of species. Biodivers Conserv 5:251–260

    Google Scholar 

  • Sierwald P, Bond JE (2007) Current status of the myriapod class Diplopoda (millipedes): Taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420

    PubMed  CAS  Google Scholar 

  • Smolander A, Kurka A, Kitunen V, Mälkönen (1994) Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N- and P-fertilized Norway spruce stands. Soil Biol Biochem 26:957–962

    Google Scholar 

  • Sohlenius B (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2:30–40

    CAS  Google Scholar 

  • Sohlenius B (1982) Short-term influence of clear-cutting on abundance of soil-microfauna (Nematoda, Rotatoria and Tardigrada) in a Swedish pine forest soil. J Appl Ecol 19:349–359

    Google Scholar 

  • Standen V (1988) Oligochaetes in fi re climax grassland and conifer plantations in Papua New Guinea. J Trop Ecol 4:39–48

    Google Scholar 

  • Sutton SL (1980) Woodlice. Pergamon Press, New York

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in Ecology vol. 5. Blackwell, Oxford

    Google Scholar 

  • Teuben A, Roejofsma TAPI (1990) Dynamic interactions between functional groups of soil arthropods and microorganisms duringdecomposition of coniferous litter in microcosm experiments. Biol Fertil Soils 9:145–151

    CAS  Google Scholar 

  • Tietema A, Warmerdam B, Lenting E, Riemer L (1992) Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils-moisture and pH. Plant Soil 147:69–78

    CAS  Google Scholar 

  • Tinzara W, Tukahirwa EM (1995) The effects of soil macrofauna on soil properties in a banana cropping system, Masaka District, Uganda, TSBF, Afnet V R

    Google Scholar 

  • Torgersen CE (1993) Spatial variability of soil organisms, pH, moisture, O-horizon depth, and temperature indifferentiated conifer stands in the Western Cascades, Oregon. A Bachelor Thesis, Department of Geography, University of Oregon

    Google Scholar 

  • Van Dam O (2001) Forest filled with gaps: effects of gap size on water and nutrient cycling in tropical rain forest. A study in Guyana. Ph.D. Thesis, Tropenbos-Guyana Series 10. Georgetown, Guyana

    Google Scholar 

  • Van Vliet PCJ, Hendrix PF (2003) Role of fauna in soil physical processes. In: Abbott LK, Murphy DV (eds) Soil biological fertility-A key to sustainable land use in agriculture. Klewer Publishers

    Google Scholar 

  • Vernimmen RRE, Verhoef HA, Verstraten JM, Bruijnzeel LA, Klomp NS, Zoomer HR, Wartenbergh PE (2007) Nitrogen mineralization, nitrification and denitrification potential in contrasting lowland rain forest types in Central Kalimantan, Indonesia. Soil Biology Biochemistry 39:2992–3003

    CAS  Google Scholar 

  • Villalobos FJ, Lavelle P (1990) The soil coleoptera community of a tropical grassland from Laguna Verde, Veracruz (Mexico). Revue d’Ecologie et Biologie du Sol. 27(1):73–93

    Google Scholar 

  • Viro PJ (1969) Prescribed burning in forestry. Communicationes Instituti Forestalis Fenniae 67:49

    Google Scholar 

  • Vitousek PM, Matson PA (1988) Nitrogen transformations in a range of tropical forest soils. Soil Biology Biochemistry 20:361–367

    CAS  Google Scholar 

  • Vitousek P, Cassman K, Cleveland CC, Crews TE, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen-fixation. Biogeochemistry 57/58:1–45

    CAS  Google Scholar 

  • Waterhouse DF (1974) The biological control of dung. Sci Am 230:100–109

    Google Scholar 

  • Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP (2005) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56(353-):360

    Google Scholar 

  • Williams BL, Griffiths BS (1989) Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms. Soil Biology and. BioChemistry 21:183–188

    Google Scholar 

  • Wood TG (1996) The agricultural importance of termites in the tropics. Agricultural zoology reviews 7:117–155

    Google Scholar 

  • Youngberg CT, Wollum IIAG (1976) Nitrogen accretion in developing Ceanothus velutinus stands. Soil Sci Soc Am J 40

    Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria: application and perspectives in Agriculture. Adv Agron 81:97–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Towhid Osman .

Study Questions

Study Questions

  1. 1.

    Mention important forest soil flora and fauna. Explain roots as living components of forest ecosystems. Describe functions of mycorrhiza.

  2. 2.

    Give a brief account of forest soil flora. Narrate functions of bacteria and fungi in a forest soil.

  3. 3.

    Classify forest soil fauna on the basis of body width. Explain functions of soil microfauna.

  4. 4.

    What are mesofaunas? Discuss mesofaunas of the forest soils and their functions.

  5. 5.

    Describe macrofaunas of different forest ecosystem and explain their functions.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osman, K. (2013). Biological Properties of Forest Soils. In: Forest Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-02541-4_5

Download citation

Publish with us

Policies and ethics