Skip to main content

HybHap: A Fast and Accurate Hybrid Approach for Haplotype Inference on Large Datasets

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8213))

Included in the following conference series:

  • 918 Accesses

Abstract

We introduce HybHap, a new approach for haplotype inference problem on large genotype datasets. HybHap is a hybrid method, based on the Parsimonious tree-grow idea, which resorts to Markov chains, in order to maximize the probability that the haplotypes will be shared by more genotypes in the dataset. Several experiments with large biological datasets taken from HapMap were performed to compare HybHap with two well known algorithms: fastPHASE and PTG. The results show that HybHap is a rather robust, reliable, and efficient method that runs orders of magnitude faster than the others, producing results of comparable accuracy, hence being much more suitable to deal with the challenge of genome wide tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonis, S., Antin, J., Tedaldi, M., Alterovitz, G.: SNP-based Bayesian networks can predict oral mucositis risk in autologous stem cell transplant recipients. Oral Dis (2013)

    Google Scholar 

  2. Jin, Y., Lee, C.G.L.: Single Nucleotide Polymorphisms Associated with MicroRNA Regulation. Biomolecules 3(2), 287–302 (2013)

    Article  MathSciNet  Google Scholar 

  3. Martinez-Herrero, S., Martinez, A.: Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene. J. Clin. Endocrinol. Metab (2013)

    Google Scholar 

  4. Wang, E.Y., Liang, W.B., Zhang, L.: Association between single-nucleotide polymorphisms in interleukin-12a and risk of chronic obstructive pulmonary disease. DNA Cell Biol. 31(9), 1475–1479 (2012)

    Article  MathSciNet  Google Scholar 

  5. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: International Conference on Research in Computational Molecular Biology (RECOMB), pp. 166–175 (2002)

    Google Scholar 

  6. Rosa, R.S., Guimarães, K.S.: Insights on haplotype inference on large genotype datasets. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds.) BSB 2010. LNCS (LNBI), vol. 6268, pp. 47–58. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 585–600. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Gusfield, D.: Inference of haplotypes from samples of diploids populations: Complexity and algorithms. Journal of Computational Biology 8, 305–324 (2001)

    Article  Google Scholar 

  9. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complex of exact and approximation algorithms. INFORMS J. Computing 16, 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Trans. Comput. Biol. Bioinformatics, pp. 141–154 (2006)

    Google Scholar 

  13. Li, Z., Zhou, W., Zhang, X., Chen, L.: A parsimonious tree-grow method for haplotype inference. Oxford Bioinformatics 21, 3475–3481 (2005)

    Article  Google Scholar 

  14. Sun, S., Greenwood, C.M., Neal, R.M.: Haplotype inference using a bayesian hidden markov model. Genetic Epidemiology 31, 937–948 (2007)

    Article  Google Scholar 

  15. Zhang, J.H., Wu, L.Y., Chen, J., Zhang, X.S.: A fast haplotype inference method for large population genotype data. Computational Statistics and Data Analysis 52, 4891–4902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eronen, L., Geerts, F., Toivonen, H.: Haplorec: efficient and accurate large-scale reconstruction of haplotypes. BMC Bioinformatics 7, 542 (2006)

    Article  Google Scholar 

  17. Eronen, L., Geerts, F., Toivonen, H.: A markov chain approach to reconstruction of long haplotypes. In: Pacific Symposium on Biocomputing, pp. 104–115 (2004)

    Google Scholar 

  18. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 59–62 (2001)

    Article  Google Scholar 

  19. Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics 78, 629–644 (2006)

    Article  Google Scholar 

  20. The International HapMap Consortium: The international hapmap project. Nature 426, 789–796 (2003)

    Google Scholar 

  21. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphism. American Journal of Human Genetics 70, 157–169 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosa, R.S., Guimarães, K.S. (2013). HybHap: A Fast and Accurate Hybrid Approach for Haplotype Inference on Large Datasets. In: Setubal, J.C., Almeida, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2013. Lecture Notes in Computer Science(), vol 8213. Springer, Cham. https://doi.org/10.1007/978-3-319-02624-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02624-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02623-7

  • Online ISBN: 978-3-319-02624-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics