Skip to main content

Recent Progress in the Development of Novel Nanostructured Biosensors for Detection of Waterborne Contaminants

  • Chapter
  • First Online:
Nanoscale Sensors

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 19))

  • 3428 Accesses

Abstract

Rapid industrialization and exploitation of natural resources to accommodate for the demands of the increasing human population have contributed to large-scale contamination of the ecosystem. The presence of environmental contaminants and toxins in the ecosystem can have a deleterious effect on human health. To counter this, there is a need to come up with effective strategies to detect and quantify the presence of these pollutants in the environment. In this review, the contribution of the evolving science of nanobiotechnology for precise sensing and quantification of waterborne contaminants will be presented. The use of portable nanobiosensors capable of instant field tests would help in screening sources of drinking water, thus eliminating the need for expensive analytical instruments. Recent advances in nanotechnology tools have enabled the fabrication of integrated nanostructured bioelectronic interfaces that are capable of sensing minute concentrations of specific analytes. The sensing principles and the quantification capability of the sensor depend on the type of nanomaterial used, its morphology, as well as the microenvironment surrounding the biological component. Nano-architectures that enable increased interaction between the desired analyte and the biological component followed by effective signal transduction to the electronic component help to improve the sensitivity and the response of the sensor. In this review, recent progress in the development of nanomaterial incorporated transducer components and biorecognition elements will be discussed. Finally, this review will also provide future research directions for the fabrication of improved, fast-acting sensitive nanobiosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss, B.: Water pollution by agriculture. Phil. Trans. Biol. Sci. 363, 659–666 (2008)

    Google Scholar 

  2. Bose, B.: Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind. Electron. Mag. 4, 6–17 (2010)

    Google Scholar 

  3. Lindenmayer, D.B., Likens, G.E.: The science and application of ecological monitoring. Biol. Conservat. 143, 1317–1328 (2010)

    Google Scholar 

  4. Lindenmayer, D.B., Likens, G.E.: Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24, 482–486 (2009)

    Google Scholar 

  5. Lovett, G.M., Burns, D.A., Driscoll, C.T., Jenkins, J.C., Mitchell, M.J., Rustad, L., Shanley, J.B., Likens, G.E., Haeuber, R.: Who needs environmental monitoring? Front. Ecol. Environ. 5, 253–260 (2007)

    Google Scholar 

  6. Looney, B.B., Falta, R.W.: Vadose Zone Science and Technology Solutions. Battelle Press Columbus, Ohio (2000)

    Google Scholar 

  7. Peshin, R., Dhawan, A., Pimentel, D.: Environmental and Economic Costs of the Application of Pesticides Primarily in the United States, in: Integrated Pest Management: Innovation-Development Process, pp. 89–111. Springer, Netherlands (2009)

    Google Scholar 

  8. Danielsen, F., Burgess, N.D., Jensen, P.M., Pirhofer-Walzl, K.: Environmental monitoring: the scale and speed of implementation varies according to the degree of people's involvement. J. Appl. Ecol. 47, 1166–1168 (2010)

    Google Scholar 

  9. Urbansky, E.T.: Perchlorate as an environmental contaminant. Environ. Sci. Pollut. Res. 9, 187–192 (2002)

    Google Scholar 

  10. Rodriguez-Mozaz, S., de Alda, M.J.L., Barcelo, D.: Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386, 1025–1041 (2006)

    Google Scholar 

  11. Bassi, A.S., Flickinger, M.C.: Biosensors, Environmental, in: Encyclopedia of Industrial Biotechnology. John Wiley & Sons Inc., Hoboken, NJ (2009)

    Google Scholar 

  12. Sethi, R.S.: Transducer aspects of biosensors. Biosens. Bioelectron. 9, 243–264 (1994). Reprinted from Gec Journal Research Vol 9, Pg 81, 1991

    Google Scholar 

  13. Scognamiglio, V., Pezzotti, G., Pezzotti, I., Cano, J., Buonasera, K., Giannini, D., Giardi, M.T.: Biosensors for effective environmental and agrifood protection and commercialization: from research to market. Microchim. Acta 170, 215–225 (2010)

    Google Scholar 

  14. Bogue, R.: Developments in biosensors-where are tomorrow’s markets? Sensor Rev. 25, 180–184 (2005)

    Google Scholar 

  15. Gokhale, A.A., Lee, I.: Cellulase immobilized nanostructured supports for efficient saccharification of cellulosic substrates. Top. Catal. 55, 1231–1246 (2012)

    Google Scholar 

  16. Rodriguez-Mozaz, S., Marco, M.P., Lopez de Alda, M., Barcelo, D.: Biosensors for environmental applications: future development trends. Pure Appl. Chem. 74(4), 723–752 (2004)

    Google Scholar 

  17. Murray, K.E., Thomas, S.M., Bodour, A.A.: Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 158, 3462–3471 (2010)

    Google Scholar 

  18. Ho, C.K., Robinson, A., Miller, D.R., Davis, M.J.: Overview of sensors and needs for environmental monitoring. Sensors 5, 4–37 (2005)

    Google Scholar 

  19. Relyea, R.A.: A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159, 363–376 (2009)

    Google Scholar 

  20. Tegart, G.: Nanotechnology: the technology for the twenty-first century. Foresight 6, 364–370 (2004)

    Google Scholar 

  21. Liota, T., Tzitzios, V.: Investing in nanotechnology. Nanotech. L & Bus 3, 521 (2006)

    Google Scholar 

  22. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)

    Google Scholar 

  23. Salata, O.V.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3 (2004)

    Google Scholar 

  24. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2002)

    Google Scholar 

  25. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2002)

    Google Scholar 

  26. Misra, N., Martinez, J.A., Huang, S.-C.J., Wang, Y., Stroeve, P., Grigoropoulos, C.P., Noy, A.: Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 106, 13780–13784 (2009)

    Google Scholar 

  27. Laocharoensuk, R., Bulbarello, A., Mannino, S., Wang, J.: Adaptive nanowire-nanotube bioelectronic system for on-demand bioelectrocatalytic transformations. Chem. Comm. 32, 3362–3364 (2007)

    Google Scholar 

  28. Wanekaya, A.K., Chen, W., Myung, N.V., Mulchandani, A.: Nanowire-based electrochemical biosensors. Electroanalysis 18, 533–550 (2006)

    Google Scholar 

  29. Grieshaber, D., MacKenzie, R., Voros, J., Reimhult, E.: Electrochemical biosensors - sensor principles and architectures. Sensors 8, 1400–1458 (2008)

    Google Scholar 

  30. Frew, J.E., Hill, H.A.O.: Electrochemical biosensors. Anal. Chem. 59, 933–944 (1987)

    Google Scholar 

  31. Ronkainen, N.J., Halsall, H.B., Heineman, W.R.: Electrochemical biosensors. Chem. Soc. Rev. 39, 1747–1763 (2010)

    Google Scholar 

  32. Li, H., Liu, S., Dai, Z., Bao, J., Yang, X.: Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9, 8547–8561 (2009)

    Google Scholar 

  33. Min, I.H., Choi, L., Ahn, K.S., Kim, B.K., Lee, B.Y., Kim, K.S., Choi, H.N., Lee, W.Y.: Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens. Bioelectron. 26, 1326–1331 (2010)

    Google Scholar 

  34. Jena, B.K., Raj, C.R.: Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal. Chem. 78, 6332–6339 (2006)

    Google Scholar 

  35. Wang, H., Wang, X., Zhang, X., Qin, X., Zhao, Z., Miao, Z., Huang, N., Chen, Q.: A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens. Bioelectron. 25, 142–146 (2009)

    Google Scholar 

  36. Zhao, W., Xu, J.J., Shi, C.G., Chen, H.Y.: Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 21, 9630–9634 (2005)

    Google Scholar 

  37. Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T.: Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123 (1995)

    Google Scholar 

  38. Hassler, B.L., Kohli, N., Zeikus, J.G., Lee, I., Worden, R.M.: Renewable dehydrogenase-based interfaces for bioelectronic applications. Langmuir 23, 7127–7133 (2007)

    Google Scholar 

  39. Hassler, B.L., Amundsen, T.J., Zeikus, J.G., Lee, I., Worden, R.M.: Versatile bioelectronic interfaces on flexible non-conductive substrates. Biosens. Bioelectron. 23, 1481–1487 (2008)

    Google Scholar 

  40. Liu, Y., Wang, M., Zhao, F., Xu, Z., Dong, S.: The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 21, 984–988 (2005)

    Google Scholar 

  41. Hrapovic, S., Liu, Y., Male, K.B., Luong, J.H.T.: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. (Washington, DC, U. S.) 76, 1083–1088 (2003)

    Google Scholar 

  42. Wang, J.: Carbon nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2004)

    Google Scholar 

  43. Zhao, X., Mai, Z., Kang, X., Zou, X.: Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay–chitosan-gold nanoparticle nanocomposite. Biosens. Bioelectron. 23, 1032–1038 (2008)

    Google Scholar 

  44. Li, Z., Hu, N.: Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles. J. Electroanal. Chem. 558, 155–165 (2003)

    Google Scholar 

  45. Wei, D., Bailey, M.J.A., Andrew, P., Ryhanen, T.: Electrochemical biosensors at the nanoscale. Lab Chip 9, 2123–2131 (2009)

    Google Scholar 

  46. Zoski, C.G.: Ultramicroelectrodes: design, fabrication, and characterization. Electroanalysis 14, 1041–1051 (2002)

    Google Scholar 

  47. Michalowicz, J., Duda, W.: Phenols-sources and toxicity. Pol. J. Environ. Stud. 16, 347 (2007)

    Google Scholar 

  48. Bruce, R.M., Santodonato, J., Neal, M.W.: Summary review of the health effects associated with phenol. Toxicol. Ind. Health 3, 535–568 (1987)

    Google Scholar 

  49. Stanca, S.E., Popescu, I.C.: Phenols monitoring and Hill coefficient evaluation using tyrosinase-based amperometric biosensors. Bioelectrochemistry 64, 47–52 (2004)

    Google Scholar 

  50. Kulys, J., Vidziunaite, R.: Amperometric biosensors based on recombinant laccases for phenols determination. Biosens. Bioelectron. 18, 319–325 (2003)

    Google Scholar 

  51. Chang, S.C., Rawson, K., McNeil, C.J.: Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosens. Bioelectron. 17, 1015–1023 (2002)

    Google Scholar 

  52. Zhang, J., Lei, J., Liu, Y., Zhao, J., Ju, H.: Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens. Bioelectron. 24, 1858–1863 (2009)

    Google Scholar 

  53. Liu, S., Yu, J., Ju, H.: Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J. Electroanal. Chem. 540, 61–67 (2003)

    Google Scholar 

  54. Song, W., Li, D.W., Li, Y.T., Li, Y., Long, Y.T.: Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosens. Bioelectron. 26, 3181–3186 (2011)

    Google Scholar 

  55. Li, Y.F., Liu, Z.M., Liu, Y.L., Yang, Y.H., Shen, G.L., Yu, R.Q.: A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal. Biochem. 349, 33–40 (2006)

    Google Scholar 

  56. Dubacheva, G.V., Porus, M.V., Sigolaeva, L.V., Pergushov, D.V., Tur, D.R., Papkov, V.S., Zezin, A.B., Yaroslavov, A.A., Eremenko, A.V., Kurochkin, I.N.: Nanostructured polyelectrolyte films for engineering highly sensitive tyrosinase biosensors: Specifics of enzyme-polyelectrolyte structures. Nanotech. Russia 3, 221–227 (2008)

    Google Scholar 

  57. Arecchi, A., Scampicchio, M., Drusch, S., Mannino, S.: Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Anal. Chim. Acta. 659, 133–136 (2010)

    Google Scholar 

  58. Korkut, S., Keskinler, B., Erhan, E.: An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76, 1147–1152 (2008)

    Google Scholar 

  59. Serra, B., Benito, B., Agüí, L., Reviejo, A.J., Pingarrón, J.M.: Graphite-teflon-peroxidase composite electrochemical biosensors. A tool for the wide detection of phenolic compounds. Electroanalysis 13, 693–700 (2001)

    Google Scholar 

  60. Ryan, O., Smyth, M.R., Fagain, C.O.: Horseradish peroxidase: the analyst’s friend. Essays Biochem. 28, 129 (1994)

    Google Scholar 

  61. Sotiropoulou, S., Gavalas, V., Vamvakaki, V., Chaniotakis, N.A.: Novel carbon materials in biosensor systems. Biosens. Bioelectron. 18, 211–215 (2003)

    Google Scholar 

  62. Kirstein, D., Kirstein, L., Scheller, F., Borcherding, H., Ronnenberg, J., Diekmann, S., Steinrucke, P.: Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase. J. Electroanal. Chem. 474, 43–51 (1999)

    Google Scholar 

  63. Glazier, S.A., Campbell, E.R., Campbell, W.H.: Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 70, 1511–1515 (1998)

    Google Scholar 

  64. Can, F., Ozoner, S.K., Ergenekon, P., Erhan, E.: Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater. Sci. Eng. C 32, 18–23 (2012)

    Google Scholar 

  65. Moretto, L.M., Ugo, P., Zanata, M., Guerriero, P., Martin, C.R.: Nitrate biosensor based on the ultrathin-film composite membrane concept. Anal. Chem. (Washington, DC, U. S.) 70, 2163–2166 (1998)

    Google Scholar 

  66. Da Silva, S., Shan, D., Cosnier, S.: Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sens. Actuators B 103, 397–402 (2004)

    Google Scholar 

  67. Salimi, A., Noorbakhsh, A., Ghadermarzi, M.: Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sens. Actuators B 123, 530–537 (2007)

    Google Scholar 

  68. Kohli, N., Lee, I., Richardson, R.J., Worden, R.M.: Theoretical and experimental study of bi-enzyme electrodes with substrate recycling. J. Electroanal. Chem. 641, 104–110 (2010)

    Google Scholar 

  69. Kohli, N., Srivastava, D., Sun, J., Richardson, R.J., Lee, I., Worden, R.M.: Nanostructured biosensor for measuring neuropathy target esterase activity. Anal. Chem. 79, 5196–5203 (2007)

    Google Scholar 

  70. Srivastava, D., Kohli, N., Richardson, R.J., Worden, R.M., Lee, I.: Neuropathy target esterase biosensor. In: Somerset, V.S. (ed.) Intelligent and Biosensors. In-Tech, New York (2010)

    Google Scholar 

  71. Du, D., Chen, S., Cai, J., Zhang, A.: Talanta 74, 766–772 (2008)

    Google Scholar 

  72. Karnati, C., Du, H.W., Ji, H.F., Xu, X.H., Lvov, Y., Mulchandani, A., Mulchandani, P., Chen, W.: Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens. Bioelectron. 22, 2636–2642 (2007)

    Google Scholar 

  73. Upadhyay, S., Rao, G.R., Sharma, M.K., Bhattacharya, B.K., Rao, V.K., Vijayaraghavan, R.: Immobilization of acetylcholineesterase choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens. Bioelectron. 25, 832–838 (2009)

    Google Scholar 

  74. Shan, D., Mousty, C., Cosnier, S.: Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal. Chem. 76, 178–183 (2004)

    Google Scholar 

  75. Wang, S., Lei, Y., Zhang, Y., Tang, J., Shen, G., Yu, R.: Hydroxyapatite nanoarray-based cyanide biosensor. Anal. Biochem. 398, 191–197 (2010)

    Google Scholar 

  76. Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification - (technical report). Pure Appl. Chem. 71, 2333–2348 (1999)

    Google Scholar 

  77. Ghindilis, A.L., Morzunova, T.G., Barmin, A.V., Kurochkin, I.N.: Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis. Biosens. Bioelectron. 11, 873–880 (1996)

    Google Scholar 

  78. Reybier, K., Zairi, S., Jaffrezic-Renault, N., Fahys, B.: The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors. Talanta 56, 1015–1020 (2002)

    Google Scholar 

  79. Keusgen, M., Kloock, J.P., Knobbe, D.T., Junger, M., Krest, I., Goldbach, M., Klein, W., Schoning, M.J.: Direct determination of cyanides by potentiometric biosensors. Sens. Actuators B 103, 380–385 (2004)

    Google Scholar 

  80. Sohail, M., Adeloju, S.B.: Electroimmobilization of nitrate reductase and nicotinamide adenine dinucleotide into polypyrrole films for potentiometric detection of nitrate. Sens. Actuators B Chem. 133, 333–339 (2008)

    Google Scholar 

  81. Sohail, M., Adeloju, S.B.: Fabrication of redox-mediator supported potentiometric nitrate biosensor with nitrate reductase. Electroanalysis 21, 1411–1418 (2009)

    Google Scholar 

  82. Schoning, M.J., Arzdorf, M., Mulchandani, P., Chen, W., Mulchandani, A.: A capacitive field-effect sensor for the direct determination of organophosphorus pesticides. Sens. Actuators B Chem. 91, 92–97 (2003)

    Google Scholar 

  83. Mulchandani, P., Mulchandani, A., Kaneva, I., Chen, W.: Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 14, 77–85 (1999)

    Google Scholar 

  84. Schoning, M.J., Krause, R., Block, K., Musahmeh, M., Mulchandani, A., Wang, J.: A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sens. Actuators B Chem. 95, 291–296 (2003)

    Google Scholar 

  85. Berezhetskyy, A. Development of conductometric biosensors based on alkaline phosphatases for the water quality control. arXiv preprint arXiv:0809.3578 (2008)

    Google Scholar 

  86. Jaffrezic-Renault, N., Dzyadevych, S.V.: Conductometric microbiosensors for environmental monitoring. Sensors 8, 2569–2588 (2008)

    Google Scholar 

  87. Guedri, H., Durrieu, C.: A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchim. Acta 163, 179–184 (2008)

    Google Scholar 

  88. de la Rica, R., Fernandez-Sanchez, C., Baldi, A.: Polysilicon interdigitated electrodes as impedimetric sensors. Electrochem. Commun. 8, 1239–1244 (2006)

    Google Scholar 

  89. Hnaien, M., Lagarde, F., Bausells, J., Errachid, A., Jaffrezic-Renault, N.: A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal. Bioanal. Chem. 400, 1083–1092 (2011)

    Google Scholar 

  90. Hnaien, M., Bourigua, S., Bessueille, F., Bausells, J., Errachid, A., Lagarde, F., Jaffrezic-Renault, N.: Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection. Electrochim. Acta 56, 10353–10358 (2011)

    Google Scholar 

  91. Wang, X.J., Dzyadevych, S.V., Chovelon, J.M., Renault, N.J., Chen, L., Xia, S.Q., Zhao, J.F.: Development of a conductometric nitrate biosensor based on Methyl viologen/Nafion (R) composite film. Electrochem. Commun. 8, 201–205 (2006)

    Google Scholar 

  92. Singh, A.K., Flounders, A.W., Volponi, J.V., Ashley, C.S., Wally, K., Schoeniger, J.S.: Development of sensors for direct detection of organophosphates. Part I: immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectron. 14, 703–713 (1999)

    Google Scholar 

  93. Ramsden, J.J.: Optical biosensors. J. Mol. Recognit. 10, 109–120 (1997)

    Google Scholar 

  94. Ligler, F.S.: Perspective on optical biosensors and integrated sensor systems. Anal. Chem. 81, 519–526 (2008)

    Google Scholar 

  95. Velasco-Garcia, M.N.: Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin. Cell Dev. Biol. 20, 27–33 (2009)

    Google Scholar 

  96. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 180, 249–261 (1949)

    Google Scholar 

  97. George, L., Ellman, K., Valentino Jr., A.: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961)

    Google Scholar 

  98. Vamvakaki, V., Chaniotakis, N.A.: Pesticide detection with a liposome-based nano-biosensor. Biosens. Bioelectron. 22, 2848–2853 (2007)

    Google Scholar 

  99. Kohli, N., Vaidya, S., Ofoli, R.Y., Worden, R.M., Lee, I.: Arrays of lipid bilayers and liposomes on patterned polyelectrolyte templates. J. Colloid Interface Sci. 301, 461–469 (2006)

    Google Scholar 

  100. Kohli, N., Hassler, B.L., Parthasarathy, L., Richardson, R.J., Ofoli, R.Y., Worden, R.M., Lee, I.: Tethered lipid bilayers on electrolessly deposited gold for bioelectronic applications. Biomacromolecules 7, 3327–3335 (2006)

    Google Scholar 

  101. Haron, S., Nabok, A.V., Ray, A.K.: Optical biosensing transducer based on silicon waveguide structure coated with polyelectrolyte nano layers. Proc. SPIE 2003, 101 (2003)

    Google Scholar 

  102. Simonian, A.L., Good, T.A., Wang, S.S., Wild, J.R.: Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta. 534, 69–77 (2005)

    Google Scholar 

  103. Liao, S.Z., Qiao, Y.A., Han, W.T., Xie, Z.X., Wu, Z.Y., Shen, G.L., Yu, R.Q.: Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal. Chem. 84, 45–49 (2012)

    Google Scholar 

  104. Zheng, Z.Z., Zhou, Y.L., Li, X.Y., Liu, S.Q., Tang, Z.Y.: Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens. Bioelectron. 26, 3081–3085 (2011)

    Google Scholar 

  105. Kim, J.H., Lim, S.Y., Nam, D.H., Ryu, J., Ku, S.H., Park, C.B.: Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosens. Bioelectron. 26, 1860–1865 (2011)

    Google Scholar 

  106. Abdullah, J., Ahmad, M., Karuppiah, N., Heng, L.Y., Sidek, H.: Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens. Actuators B Chem. 114, 604–609 (2006)

    Google Scholar 

  107. Abdullah, J., Ahmad, M., Heng, L.Y., Karuppiah, N., Sidek, H.: Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization. Talanta 70, 527–532 (2006)

    Google Scholar 

  108. Park, S.A., Jang, E., Koh, W.G., Kim, B.: Development of analytic microdevices for the detection of phenol using polymer hydrogel particles containing enzyme–QD conjugates. Talanta 84, 1000–1003 (2011)

    Google Scholar 

  109. Dong, W., Dong, C., Shuang, S., Choi, M.M.F.: Near-infrared luminescence quenching method for the detection of phenolic compounds using N-acetyl-L-cysteine-protected gold nanoparticles-tyrosinase hybrid material. Biosens. Bioelectron. 25, 1043–1048 (2010)

    Google Scholar 

  110. Carrascosa, L.G., Moreno, M., Alvarez, M., Lechuga, L.M.: Nanomechanical biosensors: a new sensing tool. Trends Anal. Chem. 25, 196–206 (2006)

    Google Scholar 

  111. Adrian, J., Fernandez, F., Muriano, A., Obregon, R., Ramon-Azcon, J., Tort, N., Marco, M.P.: Biosensors for pharmaceuticals and emerging contaminants based on novel micro and nanotechnology approaches, vol 5J. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg, pp. 47–68 (2009)

    Google Scholar 

  112. Raiteri, R., Grattarola, M., Berger, R.: Micromechanics senses biomolecules. Mater. Today 5, 22–29 (2002)

    Google Scholar 

  113. Mertens, J., Calleja, M., Ramos, D., Taryn, A., Tamayo, J. Role of the gold film nanostructure on the nanomechanical response of microcantilever sensors. Journal of Appl. Phys. 101 (034904):1 (2007)

    Google Scholar 

  114. Datar, R., Kim, S., Jeon, S., Hesketh, P., Manalis, S., Boisen, A., Thundat, T.: Detection of organophosphates using an acetyl cholinesterase (AChE) coated microcantilever. MRS Bull. 34, 449–454 (2009)

    Google Scholar 

  115. Yan, X.D., Tang, Y.J., Ji, H.F., Lvov, Y., Thundat, T.: Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Instrum. Sci. Technol. 32, 175–183 (2004)

    Google Scholar 

  116. Chen, D., Wang, J., Xu, Y., Li, D., Zhang, L., Li, Z.: Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens. Bioelectron. 41, 163–167 (2012)

    Google Scholar 

  117. Alvarez, M., Calle, A., Tamayo, J., Lechuga, L.M., Abad, A., Montoya, A.: Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens. Bioelectron. 18, 649–653 (2003)

    Google Scholar 

  118. Bache, M., Taboryski, R., Schmid, S., Aamand, J., Jakobsen, M.H.: Investigations on antibody binding to a microcantilever coated with a BAM pesticide residue. Nanoscale Res. Lett. 6, 386 (2011)

    Google Scholar 

  119. Nabok, A., Tsargorodskaya, A., Haron, S., Travis, J.: Planar waveguide enzyme sensor array for water pollution monitoring. IET 2006, 119–126 (2006)

    Google Scholar 

  120. Chiu, T.C., Huang, C.C.: Aptamer-functionalized nano-biosensors. Sensors 9, 10356–10388 (2009)

    Google Scholar 

  121. Sassolas, A., Prieto-Simon, B., Marty, J.L.: Biosensors for pesticide detection: new trends. Am. J. Anal. Chem. 3, 210–232 (2012)

    Google Scholar 

  122. Zayats, M., Kharitonov, A.B., Pogorelova, S.P., Lioubashevski, O., Katz, E., Willner, I.: Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance:application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 125, 16006–16014 (2003)

    Google Scholar 

  123. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (2006)

    Google Scholar 

  124. Demidov, W.: Nanobiosensors and molecular diagnostics: a promising partnership. Expert. Rev. Mol. Diagn. 4, 267–268 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the contributions and support from students and our collaborators. Financial support in part from the National Science Foundation (0609164, 0832730, and 0928835), the Department of Defense Strategic Environmental Research and Development Program (DOD SERDP W912HQ-12-C-0020), the USDA National Institute of Food and Agriculture (USDA-SBIR, 2011-33610-30822), the Michigan University Research Corridor, the Michigan Initiative for Innovation and Entrepreneurship, and the MSU Foundation are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilsoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gokhale, A.A., Lu, J., Lee, I. (2013). Recent Progress in the Development of Novel Nanostructured Biosensors for Detection of Waterborne Contaminants. In: Li, S., Wu, J., Wang, Z., Jiang, Y. (eds) Nanoscale Sensors. Lecture Notes in Nanoscale Science and Technology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-02772-2_1

Download citation

Publish with us

Policies and ethics