Skip to main content

Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials

  • Chapter
  • First Online:
Lasers in Materials Science

Abstract

Laser interactions have traditionally been at the center of nanomaterials science, providing highly nonequilibrium growth conditions to enable the synthesis of novel new nanoparticles, nanotubes, and nanowires with metastable phases. Simultaneously, lasers provide unique opportunities for the remote characterization of nanomaterial size, structure, and composition through tunable laser spectroscopy, scattering, and imaging. Pulsed lasers offer the opportunity, therefore, to supply the required energy and excitation to both control and understand the growth processes of nanomaterials, providing valuable views of the typically nonequilibrium growth kinetics and intermediates involved. Here we illustrate the key challenges and progress in laser interactions for the synthesis and in situ diagnostics of nanomaterials through recent examples involving primarily carbon nanomaterials, including the pulsed growth of carbon nanotubes and graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Alivisatos, J. Phys. Chem. 100(31), 13226 (1996)

    Google Scholar 

  2. C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276(5311), 398 (1997)

    Google Scholar 

  3. P.F. McMillan, Nat. Mater. 1(1), 19 (2002)

    ADS  Google Scholar 

  4. D.B. Geohegan, in Pulsed Laser Deposition of Thin Films ed. by D.H. Chrisey, G.K. Hubler (Wiley-VCH, New York, 1994)

    Google Scholar 

  5. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B-at Mol. Opt. 32(14), R131 (1999)

    ADS  Google Scholar 

  6. R.E. Smalley, Acc. Chem. Res. 25(3), 98 (1992)

    MathSciNet  Google Scholar 

  7. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Chem. Phys. Lett. 309(3–4), 165 (1999)

    ADS  Google Scholar 

  8. A.A. Puretzky, D.J. Styers-Barnett, C.M. Rouleau, H. Hu, B. Zhao, I.N. Ivanov, D.B. Geohegan, Appl. Phys. A –Mater. 93(4), 849 (2008)

    ADS  Google Scholar 

  9. G.W. Yang, Prog. Mater. Sci. 52(4), 648 (2007)

    Google Scholar 

  10. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490(7419), 192 (2012)

    ADS  Google Scholar 

  11. A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, Appl. Phys. A-Mater. 81(2), 223 (2005)

    ADS  Google Scholar 

  12. A.M. Morales, C.M. Lieber, Science 279(5348), 208 (1998)

    ADS  Google Scholar 

  13. DOE, New Science for a Secure and Sustainable Energy Future, A Report of a Subcommittee to the Basic Energy Science Advisory Committee. (U.S. Department of Energy, Dec 2008)

    Google Scholar 

  14. D.B. Geohegan, Nato. Adv. Sci. Inst. Se 265, 165 (1994)

    Google Scholar 

  15. D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 96–8, 131 (1996)

    ADS  Google Scholar 

  16. D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau, Science 273(5277), 898 (1996)

    ADS  Google Scholar 

  17. R.F. Wood, K.R. Chen, J.N. Leboeuf, A.A. Puretzky, D.B. Geohegan, Phys. Rev. Lett. 79(8), 1571 (1997)

    ADS  Google Scholar 

  18. R.F. Wood, J.N. Leboeuf, D.B. Geohegan, A.A. Puretzky, K.R. Chen, Phys. Rev. B 58(3), 1533 (1998)

    ADS  Google Scholar 

  19. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 73(4), 438 (1998)

    ADS  Google Scholar 

  20. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72(23), 2987 (1998)

    ADS  Google Scholar 

  21. R.Q. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, T. Okada, Appl. Phys. A-Mater. 93(4), 843 (2008)

    ADS  Google Scholar 

  22. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967)

    Google Scholar 

  23. A.S. Barnard, L.A. Curtiss, Nano. Lett. 5(7), 1261 (2005)

    ADS  Google Scholar 

  24. R.L. Penn, J.F. Banfield, Science 281(5379), 969 (1998)

    ADS  Google Scholar 

  25. C.R.A. Catlow, S.T. Bromley, S. Hamad, M. Mora-Fonz, A.A. Sokol, S.M. Woodley, Phys. Chem. Chem. Phys. 12(4), 786 (2010)

    Google Scholar 

  26. D.R. Hummer, J.D. Kubicki, P.R.C. Kent, J.E. Post, P.J. Heaney, J. Phys. Chem. C 113(11), 4240 (2009)

    Google Scholar 

  27. Y. Zhou, K.A. Fichthorn, J. Phys. Chem. C 116(14), 8314 (2012)

    Google Scholar 

  28. V.N. Koparde, P.T. Cummings, J. Phys. Chem. B 109(51), 24280 (2005)

    Google Scholar 

  29. M. Matsui, M. Akaogi, Mol. Simul. 6, 239 (1991)

    Google Scholar 

  30. S. Hamad, C.R.A. Catlow, S.M. Woodley, S. Lago, J.A. Mejias, J. Phys. Chem. B 109(33), 15741 (2005)

    Google Scholar 

  31. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318(6042), 162 (1985)

    ADS  Google Scholar 

  32. T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, J. Chem. Phys. 74(11), 6511 (1981)

    ADS  Google Scholar 

  33. Y. Yamaguchi, S. Maruyama, Chem. Phys. Lett. 286(3–4), 336 (1998)

    ADS  Google Scholar 

  34. B.I. Dunlap, Int. J. Quantum Chem. 64(2), 193 (1997)

    Google Scholar 

  35. S. Irle, G.S. Zheng, Z. Wang, K. Morokuma, J. Phys. Chem. B 110(30), 14531 (2006)

    Google Scholar 

  36. D.B. Geohegan, A. Puretzky, C.M. Rouleau, J.J. Jackson, G. Eres, Z. Liu, D. Styers-Barnett, H. Hu, B. Zhao, I. Ivanov, K.L. More, in Laser-Surface Interactions for New Materials Production, vol. 130, ed. by A. Miotello, P.M. Ossi (Springer, Berlin Heidelberg, 2010), p. 1

    Google Scholar 

  37. A.A. Puretzky, D.B. Geohegan, X. Fan, S.J. Pennycook, Appl. Phys. A-Mater. 70(2), 153 (2000)

    ADS  Google Scholar 

  38. A.A. Puretzky, H. Schittenhelm, X.D. Fan, M.J. Lance, L.F. Allard, D.B. Geohegan, Phys. Rev. B 65, 24 (2002)

    Google Scholar 

  39. F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, S. Iijima, Appl. Surf. Sci. 197, 650 (2002)

    ADS  Google Scholar 

  40. D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, S. Iijima, J. Phys. Chem. B 106(19), 4947 (2002)

    Google Scholar 

  41. M.D. Cheng, D.W. Lee, B. Zhao, H. Hu, D.J. Styers-Barnett, A.A. Puretzky, D.W. DePaoli, D.B. Geohegan, E.A. Ford, P. Angelini, Nanotechnology 18(18), 185604 (2007)

    ADS  Google Scholar 

  42. D.B. Geohegan, A.A. Puretzky, D. Styers-Barnett, H. Hu, B. Zhao, H. Cui, C.M. Rouleau, G. Eres, J.J. Jackson, R.F. Wood, S. Pannala, J.C. Wells, Phys. Status Solidi B 244(11), 3944 (2007)

    ADS  Google Scholar 

  43. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Nature 464(7288), 571 (2010)

    ADS  Google Scholar 

  44. D.B. Geohegan, H. Schittenhelm, X. Fan, S.J. Pennycook, A.A. Puretzky, M.A. Guillorn, D.A. Blom, D.C. Joy, Appl. Phys. Lett. 78(21), 3307 (2001)

    ADS  Google Scholar 

  45. P.J.F. Harris, Carbon 45(2), 229 (2007)

    Google Scholar 

  46. R. Sen, S. Suzuki, H. Kataura, Y. Achiba, Chem. Phys. Lett. 349(5–6), 383 (2001)

    ADS  Google Scholar 

  47. K.R.S. Chandrakumar, J.D. Readle, C. Rouleau, A. Puretzky, D.B. Geohegan, K. More, V. Krishnan, M. Tian, G. Duscher, B. Sumpter, Nanoscale 5(5), 1849 (2013)

    ADS  Google Scholar 

  48. Y. Liu, C.M. Brown, D.A. Neumann, D.B. Geohegan, A.A. Puretzky, C.M. Rouleau, H. Hu, D. Styers-Barnett, P.O. Krasnov, B.I. Yakobson, Carbon 50(13), 4953 (2012)

    Google Scholar 

  49. A. Izadi-Najafabadi, T. Yamada, D.N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, K. Hata, ACS Nano 5(2), 811 (2011)

    Google Scholar 

  50. S.K. Doorn, L.X. Zheng, M.J. O’Connell, Y.T. Zhu, S.M. Huang, J. Liu, J. Phys. Chem. B 109(9), 3751 (2005)

    Google Scholar 

  51. S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A.C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni, J. Robertson, Nano Lett. 7(3), 602 (2007)

    ADS  Google Scholar 

  52. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86(6), 1118 (2001)

    ADS  Google Scholar 

  53. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, R. Saito, Carbon 40(12), 2043 (2002)

    Google Scholar 

  54. R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, Nat. Mater. 11(3), 213 (2012)

    ADS  Google Scholar 

  55. F. Ding, A.R. Harutyunyan, B.I. Yakobson, P Natl. Acad. Sci. USA 106(8), 2506 (2009)

    ADS  Google Scholar 

  56. A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Nature 424(6945), 171 (2003)

    ADS  Google Scholar 

  57. J. Robertson, G. Zhong, H. Telg, C. Thomsen, J.H. Warner, G.A.D. Briggs, U. Dettlaff-Weglikowska, S. Roth, Appl. Phys. Lett. 93(16), 163111 (2008)

    ADS  Google Scholar 

  58. H. Huang, C.H. Liu, Y. Wu, S.S. Fan, Adv. Mater. 17(13), 1652 (2005)

    Google Scholar 

  59. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z.W. Pan, H.T. Cui, R.Y. Jin, J. Howe, D.B. Geohegan, Appl. Phys. Lett. 89(22), 223110 (2006)

    ADS  Google Scholar 

  60. C.L. Pint, Y.Q. Xu, M. Pasquali, R.H. Hauge, ACS Nano 2(9), 1871 (2008)

    Google Scholar 

  61. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306(9), 1362 (2004)

    ADS  Google Scholar 

  62. S. Esconjauregui, M. Fouquet, B.C. Bayer, C. Ducati, R. Smajda, S. Hofmann, J. Robertson, ACS Nano 4(12), 7431 (2010)

    Google Scholar 

  63. D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, J.Y. Howe, Appl. Phys. Lett. 83(9), 1851 (2003)

    ADS  Google Scholar 

  64. S. Maruyama, Y. Miyauchi, Y. Murakami, S. Chiashi, New J. Phys. 5, 1 (2003)

    Google Scholar 

  65. J.J. Jackson, A.A. Puretzky, K.L. More, C.M. Rouleau, G. Eres, D.B. Geohegan, ACS Nano 4(12), 7573 (2010)

    Google Scholar 

  66. D.B. Geohegan, A.A. Puretzky, J.J. Jackson, C.M. Rouleau, G. Eres, K.L. More, ACS Nano 5(10), 8311 (2011)

    Google Scholar 

  67. A.A. Puretzky, D.B. Geohegan, J.J. Jackson, S. Pannala, G. Eres, C.M. Rouleau, K.L. More, N. Thonnard, J.D. Readle, Small 8(10), 1534 (2012)

    Google Scholar 

  68. P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge, B. Maruyama, Nano Lett. 9(1), 44 (2009)

    ADS  Google Scholar 

  69. S.M. Kim, C.L. Pint, P.B. Amama, R.H. Hauge, B. Maruyama, E.A. Stach, J. Mater. Res. 25(10), 1875 (2010)

    ADS  Google Scholar 

  70. A.R. Harutyunyan, G.G. Chen, T.M. Paronyan, E.M. Pigos, O.A. Kuznetsov, K. Hewaparakrama, S.M. Kim, D. Zakharov, E.A. Stach, G.U. Sumanasekera, Science 326(5949), 116 (2009)

    ADS  Google Scholar 

  71. R.T.K. Baker, M.A. Barber, R.J. Waite, P.S. Harris, F.S. Feates, J. Catal. 26(1), 51 (1972)

    Google Scholar 

  72. M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Nano Lett. 6(3), 449 (2006)

    ADS  Google Scholar 

  73. A. Li-Pook-Than, J. Lefebvre, P. Finnie, J. Phys. Chem. C 114(25), 11018 (2010)

    Google Scholar 

  74. G. Eres, A.A. Kinkhabwala, H.T. Cui, D.B. Geohegan, A.A. Puretzky, D.H. Lowndes, J. Phys. Chem. B 109(35), 16684 (2005)

    Google Scholar 

  75. G. Eres, C.M. Rouleau, M. Yoon, A.A. Puretzky, J.J. Jackson, D.B. Geohegan, J. Phys. Chem. C 113(35), 15484 (2009)

    Google Scholar 

  76. N. Latorre, E. Romeo, F. Cazana, T. Ubieto, C. Royo, J.J. Villacampa, A. Monzon, J. Phys. Chem. C 114(11), 4773 (2010)

    Google Scholar 

  77. A.A. Puretzky, G. Eres, C.M. Rouleau, I.N. Ivanov, D.B. Geohegan, Nanotechnology 19, 5 (2008)

    Google Scholar 

  78. E.R. Meshot, A.J. Hart, Appl Phys Lett 92, 11 (2008)

    Google Scholar 

  79. P. Vinten, P. Marshall, J. Lefebvre, P. Finnie, Nanotechnology 21, 3 (2010)

    Google Scholar 

  80. M. Bedewy, E.R. Meshot, H.C. Guo, E.A. Verploegen, W. Lu, A.J. Hart, J. Phys. Chem. C 113(48), 20576 (2009)

    Google Scholar 

  81. M. Stadermann, S.P. Sherlock, J.B. In, F. Fornasiero, H.G. Park, A.B. Artyukhin, Y.M. Wang, J.J. De Yoreo, C.P. Grigoropoulos, O. Bakajin, A.A. Chernov, A. Noy, Nano Lett. 9(2), 738 (2009)

    ADS  Google Scholar 

  82. Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24(17), 2320 (2012)

    Google Scholar 

  83. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Nat. Nanotechnol. 2(1), 53 (2007)

    ADS  Google Scholar 

  84. H. Wang, L.L. Yu, Y.H. Lee, Y.M. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12(9), 4674 (2012)

    ADS  Google Scholar 

  85. Y.J. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8(7), 966 (2012)

    Google Scholar 

  86. K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Nano Lett. 12(2), 714 (2012)

    ADS  Google Scholar 

  87. R.Z. Ma, T. Sasaki, Adv. Mater. 22(45), 5082 (2010)

    Google Scholar 

  88. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, P Natl. Acad. Sci. USA 102(30), 10451 (2005)

    ADS  Google Scholar 

  89. P.A. Hu, Z.Z. Wen, L.F. Wang, P.H. Tan, K. Xiao, ACS Nano 6(7), 5988 (2012)

    Google Scholar 

  90. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)

    ADS  Google Scholar 

  91. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331(6017), 568 (2011)

    ADS  Google Scholar 

  92. M. Qian, Y.S. Zhou, Y. Gao, T. Feng, Z. Sun, L. Jiang, Y.F. Lu, Appl. Surf. Sci. 258(22), 9092 (2012)

    ADS  Google Scholar 

  93. J.J. Hu, J.S. Zabinski, J.H. Sanders, J.E. Bultman, A.A. Voevodin, J. Phys. Chem. B 110(18), 8914 (2006)

    Google Scholar 

  94. Y. Miyamoto, H. Zhang, D. Tomanek, Phys. Rev. Lett. 104, 20 (2010)

    Google Scholar 

  95. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80(6), 1339 (1958)

    Google Scholar 

  96. M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater. 19(18), 4396 (2007)

    Google Scholar 

  97. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45(7), 1558 (2007)

    Google Scholar 

  98. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 9(3), 1058 (2009)

    ADS  Google Scholar 

  99. D.A. Sokolov, K.R. Shepperd, T.M. Orlando, J. Phys. Chem. Lett. 1(18), 2633 (2010)

    Google Scholar 

  100. D.A. Sokolov, C.M. Rouleau, D.B. Geohegan, T.M. Orlando, Carbon 53, 9 (2013)

    Google Scholar 

  101. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Nano Lett. 12(6), 3187 (2012)

    Google Scholar 

  102. W.A. de Heer, arXiv:1012.1644v1 MRS Bulletin (submitted) (2010)

    Google Scholar 

  103. S. Lee, M.F. Toney, W. Ko, J.C. Randel, H.J. Jung, K. Munakata, J. Lu, T.H. Geballe, M.R. Beasley, R. Sinclair, H.C. Manoharan, A. Salleo, ACS Nano 4(12), 7524 (2010)

    Google Scholar 

  104. S.N. Yannopoulos, A. Siokou, N.K. Nasikas, V. Dracopoulos, F. Ravani, G.N. Papatheodorou, Adv. Funct. Mater. 22(1), 113 (2012)

    Google Scholar 

  105. S. Bhaviripudi, X.T. Jia, M.S. Dresselhaus, J. Kong, Nano Lett. 10(10), 4128 (2010)

    ADS  Google Scholar 

  106. J.M. Wofford, S. Nie, K.F. McCarty, N.C. Bartelt, O.D. Dubon, Nano Lett. 10(12), 4890 (2010)

    ADS  Google Scholar 

  107. X.S. Li, Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9(12), 4359 (2009)

    ADS  Google Scholar 

  108. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5(8), 574 (2010)

    ADS  Google Scholar 

  109. R.S. Weatherup, B.C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlogl, S. Hofmann, Nano Lett. 11(10), 4154 (2011)

    ADS  Google Scholar 

  110. X.S. Li, W.W. Cai, L. Colombo, R.S. Ruoff, Nano Lett. 9(12), 4268 (2009)

    ADS  Google Scholar 

  111. A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9(1), 30 (2009)

    ADS  Google Scholar 

  112. A. Gruneis, K. Kummer, D.V. Vyalikh, New J Phys 11(7), 073050 (2009)

    Google Scholar 

  113. K.L. Saenger, J.C. Tsang, A.A. Bol, J.O. Chu, A. Grill, C. Lavoie, Appl. Phys. Lett. 96, 15 (2010)

    Google Scholar 

  114. S. Chiashi, Y. Murakami, Y. Miyauchi, S. Maruyama, Chem. Phys. Lett. 386(1–3), 89 (2004)

    ADS  Google Scholar 

  115. A.A. Puretzky, D.B. Geohegan, S. Pannala, C.M. Rouleau, M. Regmi, N. Thonnard, G. Eres, Nanoscale. 5, 6507 (2013).

    Google Scholar 

  116. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 18 (2006)

    Google Scholar 

  117. J.B. Park, W. Xiong, Y. Gao, M. Qian, Z.Q. Xie, M. Mitchell, Y.S. Zhou, G.H. Han, L. Jiang, Y.F. Lu, Appl. Phys. Lett. 98, 12 (2011)

    Google Scholar 

  118. J.B. Park, W. Xiong, Z.Q. Xie, Y. Gao, M. Qian, M. Mitchell, M. Mahjouri-Samani, Y.S. Zhou, L. Jiang, Y.F. Lu, Appl. Phys. Lett. 99, 5 (2011)

    Google Scholar 

  119. K. Xiao, W. Deng, J.K. Keum, M. Yoon, I.V. Vlassiouk, K.W. Clark, A.-P. Li, I.I. Kravchenko, G. Gu, E.A. Payzant, J. Am. Chem. Soc. 135(9), 8 (2013)

    Google Scholar 

Download references

Acknowledgments

Synthesis science sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Characterization science and explorations of functionality performed at the Center for Nanophase Materials Sciences, and high-resolution electron microscopy was performed in part at the Shared Research Equipment Collaborative Research Center, which are both sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Geohegan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geohegan, D.B. et al. (2014). Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials. In: Castillejo, M., Ossi, P., Zhigilei, L. (eds) Lasers in Materials Science. Springer Series in Materials Science, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-02898-9_7

Download citation

Publish with us

Policies and ethics