Skip to main content

Synchronous Finite State Machines Design with Quantum-Inspired Evolutionary Computation

  • Chapter
Hardware for Soft Computing and Soft Computing for Hardware

Part of the book series: Studies in Computational Intelligence ((SCI,volume 529))

  • 802 Accesses

Abstract

Synchronous finite state machines are very important for digital sequential designs. Among other important aspects, they represent a powerful way for synchronizing hardware components so that these components may cooperate adequately in the fulfillment of the main objective of the hardware design. In this chapter, we propose an evolutionary methodology based on the principles of quantum computing to synthesize finite state machines. First, we optimally solve the state assignment NP-complete problem, which is inherent to designing any synchronous finite state machines. This is motivated by the fact that with an optimal state assignment, one can physically implement the state machine in question using a minimal hardware area and response time. Second, with the optimal state assignment provided, we propose to use the same evolutionary methodology to yield an optimal evolutionary hardware that implements the state machine control component. The evolved hardware requires a minimal hardware area and imposes a minimal propagation delay on the machine output signals.

This chapter was developed together with Marcos Paulo Mello Araujo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhyne, V.T.: Fundamentals of digital systems design. In: Computer Applications in Electrical Engineering Series. Prentice-Hall (1973)

    Google Scholar 

  2. Armstrong, D.B.: A programmed algorithm for assigning internal codes to sequential machines. IRE Transactions on Electronic Computers EC-11(4), 466–472 (1962)

    Google Scholar 

  3. Humphrey, W.S.: Switching circuits with computer applications. McGraw-Hill, New York (1958)

    Google Scholar 

  4. Booth, T.L.: Sequential machines and automata theory. John Wiley & Sons, New York (1967)

    MATH  Google Scholar 

  5. Ali, B., Kalganova, T., Almaini, A.E.: Extrinsic evolution of finite state machine. In: Proc. of International Conference on Adaptive Computing in Design and Manufacture, pp. 157–168. Springer (2002)

    Google Scholar 

  6. Ali, B.: Evolutionary algorithms for synthesis and optimization of sequential logic circuits. Ph.D. Thesis, School of Engineering of Napier University, Edinburgh, UK (2003)

    Google Scholar 

  7. Nedjah, N., Mourelle, L.M.: Evolvable machines: theory and practice. STUD FUZZ, vol. 161. Springer, Heidelberg (2005)

    Book  Google Scholar 

  8. Nedjah, N., Mourelle, L.M.: Mealy finite state machines: an evolutionary approach. International Journal of of Innovative Computing, Information and Control 2(4), 789–806 (2006)

    MathSciNet  Google Scholar 

  9. ABC, A system for sequential synthesis and verification, Release 70930. In: Logic Synthesis and Verification Group, Berkeley (2005)

    Google Scholar 

  10. Ercegovac, M., Lang, T., Moreno, J.H.: Introduction to Digital Systems. John Wiley, USA (1998)

    Google Scholar 

  11. Hartmanis, J.: On the state assignment problem for sequential machines. IRE Transactions on Electronic Computers  EC-10(2), 157–165 (1961)

    Google Scholar 

  12. Amaral, J.N., Tumer, K., Glosh, J.: Designing genetic algorithms for the state assignment problem. IEEE Transactions on Systems, Man, and Cybernetics 25(4), 686–694 (1995)

    Article  Google Scholar 

  13. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proc. the Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  14. Lin, F.T.: An enhancement of quantum key distribution protocol with noise problem. International Journal of of Innovative Computing, Information and Control 4(5), 1043–1054 (2008)

    Google Scholar 

  15. Hey, T.: Quantum computing. Computing Control Engineering Journal 10(3), 105–112 (1999)

    Article  Google Scholar 

  16. Dirac, P.A.M.: The principles of quantum mechanics, 4th edn. Oxford University Press (1958)

    Google Scholar 

  17. Zhang, G.: Novel quantum genetic algorithm and its applications. Frontiers of Electrical and Electronic Engineering in China 1(1), 31–36 (2006)

    Article  Google Scholar 

  18. Narayanan, A.: Quantum computing for beginners. In: Proc. of the Congress on Evolutionary Computation, vol. 3, pp. 2231–2238. IEEE Press, Piscataway (1999)

    Google Scholar 

  19. Nedjah, N., Mourelle, L.M. (eds.): Swarm Intelligent Systems. SCI, vol. 26. Springer, Heidelberg (2006)

    Google Scholar 

  20. Uno, T., Katagiri, H., Kato, K.: An evolutionary multi-agent based search method for stackelberg solutions of bi-level facility location problems. International Journal of of Innovative Computing, Information and Control 4(5), 1033–1042 (2008)

    Google Scholar 

  21. Liu, C., Wang, Y.: A new evolutionary algorithm for multi-objective optimization problems. ICIC Express Letters 1(1), 93–98 (2007)

    Google Scholar 

  22. Zhang, X., Lu, Q., Wen, S., Wu, M., Wang, X.: A modified differential evolution for constrained optimization. ICIC Express Letters 2(2), 181–186 (2008)

    Google Scholar 

  23. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)

    Article  Google Scholar 

  24. Hinterding, R.: Representation, constraint satisfaction and the knapsack problem. In: Proc. of the Congress on Evolutionary Computation, vol. 2, pp. 1286–1292. IEEE Press, Piscataway (1999)

    Google Scholar 

  25. Akbarzadeh, M.R., Khorsand, A.R.: Quantum gate optimization in a meta-level genetic quantum algorithm. In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3055–3062. IEEE Press, Piscataway (2005)

    Google Scholar 

  26. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Optimised state assignment for fSMs using quantum inspired evolutionary algorithm. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 332–341. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Logic synthesis for fSMs using quantum inspired evolution. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 32–39. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. ACM/SIGDA, Collaborative Benchmarking and Experimental Algorithmic, North Carolina State University (2009), http://www.cbl.ncsu.edu

  29. Diaconis, P., Efron, B.: Testing for independence in a two-way table: new interpretations of the chi-square statistic (with discussion). The Annals of Statistics 13, 845–913 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Higuchi, T.: Evolving hardware with genetic learning. In: Proc. of International Conference on Simulation Adaptive Behavior: A First Step Toward Building a Darwin Machine, pp. 417–424. MIT Press (1992)

    Google Scholar 

  31. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware behaviors. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 250–265. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  32. Yao, X., Higuchi, T.: Promises and challenges of cvolvable hardware. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29(1), 87–97 (1999)

    Article  Google Scholar 

  33. Zebulum, R.S., Pacheco, M.A., Vellasco, M.M.: Evolutionary electronics: automatic design of electronic circuits and systems by genetic algorithms. CRC Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Nedjah .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nedjah, N., de Macedo Mourelle, L. (2014). Synchronous Finite State Machines Design with Quantum-Inspired Evolutionary Computation. In: Hardware for Soft Computing and Soft Computing for Hardware. Studies in Computational Intelligence, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-319-03110-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03110-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03109-5

  • Online ISBN: 978-3-319-03110-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics