Skip to main content

Optimal Design of Underwater Acoustic Projector with Active Elements Made from Porous Piezoceramics

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 152))

  • 2052 Accesses

Abstract

Porous piezoceramic materials have received considerable attention due to their successful application in ultrasonic transducers, hydrophones and other piezoelectric devices. In order to formulate and solve the optimization problem for multilayered piezoelectric transducer with active porous piezoelectric layer, the calculation of the effective moduli for porous piezoelectric material has been previously performed. The obtained dependences of material properties on porosity allowed us to decrease the number of design variables. The multi-objective optimization problem based on the Pareto-frontier calculation has been solved using the live-link of finite-element (FE) package Comsol Multiphysics with MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Sathishkumar, A. Vimalajuliet, J.S. Prasath et al., Indian J. Sci. Technol. 4(1), 8 (2011)

    Google Scholar 

  2. M.I.H. Yaacob, in Proceedings of the 7th International Symposium on Mechatronics and its Applications (ISMA10), Sharjah, UAE, 2010

    Google Scholar 

  3. K. Boumchedda, M. Hamadi, G. Fantozzi, J. Eur. Ceram. Soc. 27, 4169 (2007)

    Article  Google Scholar 

  4. I. Getman, S. Lopatin, Ferroelectrics 186, 301 (1996)

    Article  Google Scholar 

  5. S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Craciun, G. Guidarelli, J. Acoust. Soc. Am. 106(2), 733 (1999)

    Article  Google Scholar 

  6. R. Ramesh, H. Kara, C.R. Bowen, Ultrasonics 43, 173 (2005)

    Article  Google Scholar 

  7. H. Banno, Ferroelectrics 50, 3 (1983)

    Article  Google Scholar 

  8. W. Wersing, K. Lubitz, J. Moliaupt, Ferroelectrics 68(1/4), 77 (1986)

    Article  Google Scholar 

  9. K. Mizumura, Y. Kurihara, H. Ohashi, Jpn. J. Appl. Phys. 32(1), 2282 (1993)

    Article  Google Scholar 

  10. H. Kara, R. Ramesh, R. Stevens, C.R. Bowen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(3), 289 (2003)

    Article  Google Scholar 

  11. A.N. Rybyanets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(7), 1492 (2011)

    Article  Google Scholar 

  12. E. Roncari, C. Galassi, F. Craciun, G. Guidarelli, S. Marselli, V. Pavia, in Proceedings of the 11th IEEE International Symposium on Applications of Ferroelectrics (1998)

    Google Scholar 

  13. V.Y. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)

    Google Scholar 

  14. A.V. Nasedkin, M.S. Shevtsova, in Ferroelectrics and Superconductors: Properties and Applications, ed by I.A. Parinov (Nova Science Publishers, New York, 2011), p. 231

    Google Scholar 

  15. T.V. Domashenkina, A.V. Nasedkin, V.V. Remizov, M.S. Shevtsova, in Proceedings 7th GRACM International Congress on Computational Mechanics, Athens, Greece, 2011

    Google Scholar 

  16. A.V. Nasedkin, M.S. Shevtsova, in Physics and Mechanics of New Materials and their Applications, ed by I.A. Parinov, S-H. Chang (Nova Science Publishers, New York, 2013), p. 185

    Google Scholar 

  17. L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezoactive Composite Materials (Naukova Dumka, Kiev, 1989) (In Russian)

    Google Scholar 

  18. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47(19), 1400 (1981)

    Article  Google Scholar 

  19. R. Guo, C.-A. Wang, J. Appl. Phys. 108, 124112 (2010)

    Article  Google Scholar 

  20. B. Jadidian, N.M. Hagh, A.A. Winder, A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368 (2009)

    Article  Google Scholar 

  21. J.F. Li, K. Takagi, M. Ono et al., J. Am. Ceram. Soc. 86, 1094 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Russian Foundation for the Basic Research (Grant 12-08-31350) and by the National Science Council of Taiwan, R.O.C. (Project NSC99-2923-E-022-001-MY3). Shevtsova M. S. thanks the Southern Federal University for financial support in fulfillment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Shevtsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nasedkin, A., Shevtsova, M., Chang, SH. (2014). Optimal Design of Underwater Acoustic Projector with Active Elements Made from Porous Piezoceramics. In: Chang, SH., Parinov, I., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-319-03749-3_20

Download citation

Publish with us

Policies and ethics