Skip to main content

Effects of Multi-scale Heterogeneity

  • Chapter
Percolation Theory for Flow in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

  • 2605 Accesses

Abstract

At different measurement scales it is possible that different variability in local properties can dominate the process of upscaling. This chapter addresses a number of such complex media and shows how it may be possible to use percolation concepts at, e.g., both the pore scale and at the geologic scale in the same problem. At the same time it demonstrates that, for the case of nested heterogeneity, the scale dependence of the mean permeability can be understood only when it is clear that the effective permeability at a given scale has no relationship to the mean value of the permeability at smaller scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fact that these authors tended to replace equilibrium K values less than 5×10−8 cm/s with approximately this value (which represented a maximum experimental time) narrowed the widths of their K distributions drastically in the limit of small θ.

References

  1. Ambegaokar, V.N., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2621 (1971)

    Article  Google Scholar 

  2. Blank, L.A., Hunt, A.G., Skinner, T.E.: A numerical procedure to calculate hydraulic conductivity for an arbitrary pore size distribution. Vadose Zone J. 7, 461–472 (2008)

    Article  Google Scholar 

  3. Brace, W.F.: Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci. 17, 242–251 (1980)

    Article  Google Scholar 

  4. Bredehoeft, J.D.: Groundwater—a review. Rev. Geophys. 21, 760765 (1983)

    Google Scholar 

  5. Cole, C.R., Wurstner, S.K., Bergeron, M.P., Williams, M.D., Thorne, P.D.: Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford site unconfined aquifer system. FY 1996 and 1997 status report, PNNL 11801, Pacific Northwest National Laboratory, Richland, WA 99352 (1997)

    Google Scholar 

  6. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conductances. Adv. Water Resour. 24(3,4), 279–307 (2001)

    Article  Google Scholar 

  7. Hunt, A.G.: Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity. Adv. Water Resour. 26, 71–77 (2003)

    Article  Google Scholar 

  8. Hunt, A.G.: An explicit derivation of an exponential dependence of the hydraulic conductivity on saturation. Adv. Water Resour. 27, 197–201 (2004)

    Article  Google Scholar 

  9. Hunt, A.G.: Scale-dependent dimensionality cross-over; implications for scale-dependent hydraulic conductivity in anisotropic porous media. Hydrogeol. J. (2005). doi:10.1007/s10040-005-0453-6

    Google Scholar 

  10. Hunt, A.G., Blank, L.A., Skinner, T.E.: Distributions of the hydraulic conductivity for single-scale anisotropy. Philos. Mag. 86, 2407–2428 (2006)

    Article  Google Scholar 

  11. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porous media: comparison with examples from the Hanford site. Adv. Water Resour. 25, 129–146 (2002)

    Article  Google Scholar 

  12. Hunt, A.G., Skinner, T.E.: A proposed analysis of saturation-dependent anisotropy for U.S. DOE Hanford site soils. Hydrogeol. J. (2009). doi:10.1007/s10040-009-0499-y

    Google Scholar 

  13. Khaleel, R., Relyea, J.F.: Variability of Gardner’s alpha for coarse-textured sediments. Water Resour. Res. 37, 1567–1575 (2001)

    Article  Google Scholar 

  14. Last, G.V., Caldwell, T.G.: Core sampling in support of the vadose zone transport field study. PNNL-13454, Pacific Northwest National Laboratory, Richland, WA 99352 (2001)

    Google Scholar 

  15. Last, G.V., Caldwell, T.G., Owen, A.T.: Sampling of boreholesWL-3A through -12 in support of the vadose zone transport field study. PNNL-13631, Pacific Northwest National Laboratory, Richland, WA 99352 (2001)

    Google Scholar 

  16. Matheron, G.: Elements Pour Une Theorie des Milieux Poreux. Masson et Cie, Paris (1967)

    Google Scholar 

  17. McPherson, B.J., the EarthLab Steering Committee: EarthLab: A Subterranean Laboratory and Observatory to Study Microbial Life, Fluid Flow, and Rock Deformation. Geosciences Professional Services, Inc., 60 pp. (2003)

    Google Scholar 

  18. Nielsen, D.R.: Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–259 (1973)

    Google Scholar 

  19. Nimmo, J.R.: Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61, 712–719 (1997)

    Article  Google Scholar 

  20. Pollak, M.: A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 11, 1–24 (1972). doi:10.1016/0022-3093(72)90304-3

    Article  Google Scholar 

  21. Proce, C.J., Ritzi, R.W., Dominic, D.F., Dai, Z.X.: Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water 42, 658–670 (2004)

    Article  Google Scholar 

  22. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties I. Theory. Soil Sci. Soc. Am. J. 55, 1231 (1991)

    Article  Google Scholar 

  23. Schaap, M.G., Shouse, P.J., Meyer, P.D.: Laboratory measurements of the unsaturated hydraulic properties at the vadose zone transport field study site. PNNL Report, 14284, Pacific Northwest National Laboratory, Richland, WA 99352 (2003)

    Google Scholar 

  24. Scher, H., Zallen, R.: Critical density in percolation processes. J. Chem. Phys. 53, 3759 (1970)

    Article  Google Scholar 

  25. Shah, C.B., Yortsos, Y.C.: The permeability of strongly disordered systems. Phys. Fluids 8, 280–282 (1996)

    Article  Google Scholar 

  26. Sharma, M.L.: Influence of soil structure on water retention, water movement, and thermodynamic properties of absorbed wate. Ph.D. Thesis, Univ. Hawaii, 190 pp. Univ. Microfilms, Ann Arbor, Mich. (1966) [Diss. Abst. 28 17600B (1966)]

    Google Scholar 

  27. Silliman, S.E.: The influence of grid discretization on the percolation probability within discrete random fields. J. Hydrol. 113, 177–191 (1990)

    Article  Google Scholar 

  28. Sisson, J.B., Lu, A.H.: Field calibration of computer models for application to buried liquid discharges: A status report. RHO-ST-46 P. Rockwell Hanford Operations, Richland, WA 99352 (1984)

    Google Scholar 

  29. Ward, A.L.: Vadose zone transport field study: Summary report. PNNL Report 15443, Pacific Northwest National Laboratory, Richland, WA 99352 (2006)

    Google Scholar 

  30. Ward, A.L., Caldwell, T.G., Gee, G.W.: Vadose Zone Transport field study: soil water content distributions by neutron moderation. PNNL Report 13795, Pacific Northwest National Laboratory, Richland, WA 99352 (2000)

    Google Scholar 

  31. Ward, A.L., Zhang, Z.G., Gee, G.W.: Upscaling unsaturated hydraulic parameters for flow through heterogeneous anisotropic sediments. Adv. Water Resour. 29, 268–280 (2006)

    Article  Google Scholar 

  32. Willett, S.D., Chapman, D.S.: Temperatures, fluid flow and the thermal history of the Uinta Basin. In: Collection Colloques et Seminaires—Institut Francais du Petrole, vol. 45. Technip, Paris (1987)

    Google Scholar 

  33. Ye, M., Khaleel, R., Yeh, T.-C.: Stochastic analysis of moisture plume dynamics of a field injection experiment. Water Resources Research 41 (2005). doi:10.1029/2004WR003735

  34. Yeh, T.-C., Ye, M., Khaleel, R.: Estimation of effective unsaturated hydraulic conductivity tensor using spatial moments of observed moisture plume. Water Resources Research 41 (2005). doi:10.1029/2004WR003736

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 12.1

    Repeat the calculations of K for nested heterogeneity that led to the entries of Table 12.1, but using a critical volume fraction of 0.10.

  2. 12.2

    Allow K to follow a log-uniform distribution with a prescribed width equal to that of the example in Sect. 12.3, and discretize the distribution as in the procedure there. Find the upscaled K as a function of an arbitrary critical volume fraction. Find the value of the critical volume fraction which yields the Matheron conjecture (Eq. (2.30)). How does this critical volume fraction compare with the typical value of about 0.16 quoted in the literature? Is it possible for the Matheron conjecture to be accurate for all values of the width parameter using the same critical volume fraction?

  3. 12.3

    Consider Problem 12.2 again, but allow nested heterogeneity analogously to the procedure of this chapter. Thus the critical volume fraction is, to a good approximation, independent of scale. Investigate the performance of the Matheron conjecture for the upscaling at both scales; does choice of the critical volume fraction of Problem 12.2, which guarantees equivalence to the Matheron conjecture at the lowest length scale, also guarantee equivalence to the Matheron conjecture at the next higher length scale?

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Effects of Multi-scale Heterogeneity. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_12

Download citation

Publish with us

Policies and ethics