Skip to main content

Crack front perturbations revisited

  • Conference paper
  • First Online:
Fracture Phenomena in Nature and Technology
  • 871 Accesses

Abstract

The problem of the in-plane dynamic perturbation of a crack propagating with a front that is nominally straight is solved, to second order in the perturbation. The method of approach is a streamlined and generalized version of that previously applied to first order by the author and co-workers. It emerges, however, that the analysis at second order requires for its consistency the introduction of a new singular term, of a type not present at first order. The analysis is restricted to the case of Mode I loading, for clarity of exposition. It is carried out at a level of generality that incorporates viscoelastic response as well as propagation in a “vertically stratified” medium including, as a special case, propagation in a slab of finite thickness. For illustration, the general solution is specialized to the case of a stationary crack in an infinite elastic medium and agreement with a solution recently developed by methodology that is specific to the static case is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Leblond J-B, Patinet S, Frelat J, Lazarus V (2012) Second-order coplanar perturbation of a semi-infinite crack in an infinite body. Eng Fract Mech 90:129–142

    Google Scholar 

  • Movchan AB, Willis JR (1995) Dynamic weight functions for a moving crack. II. Shear loading. J Mech Phys Solids 43:1369–1383

    Google Scholar 

  • Movchan AB, Willis JR (2001) The influence of viscoelasticity on crack front waves. J Mech Phys Solids 49:2177–2189

    Google Scholar 

  • Movchan AB, Willis JR (2002) Theory of crack front waves. In: Abrahams ID, Martin PA, Simons MJ (eds) Diffraction and scattering in fluid mechanics and elasticity. Kluwer, Dordrecht, pp 235–250

    Google Scholar 

  • Movchan NV, Movchan AB, Willis JR (2005) Perturbation of a dynamic crack in an infinite strip. Q J Mech Appl Math 58:333–347

    Google Scholar 

  • Obrezanova O, Willis JR (2003) Stability of intersonic shear crack propagation. J Mech Phys Solids 51:1957–1970

    Google Scholar 

  • Obrezanova O, Willis JR (2008) Stability of an intersonic crack to a perturbation of its edge. J Mech Phys Solids 56:51–69

    Google Scholar 

  • Rice JR (1989) Weight function theory for three-dimensional elastic crack analysis. In: Wei RP, Gangloff RP (eds) Fracture mechanics: perspectives and directions (twentieth symposium), ASTM STP 1020. American Society for Testing and Materials, Philadelphia, pp 29–57

    Google Scholar 

  • Vasoya M, Leblond J-B, Ponson L (2013) A geometrically nonlinear analysis of coplanar crack propagation in some heterogeneous medium. Int J Solids Struct 50:371–378

    Google Scholar 

  • Willis JR, Movchan AB (1995) Dynamic weight functions for a moving crack. I. Mode I loading. Mech Phys Solids 43:319–341

    Google Scholar 

  • Willis JR, Movchan AB (1997) Three-dimensional dynamic perturbation of a propagating crack. J Mech Phys Solids 45:591–610

    Google Scholar 

  • Willis JR (1999) Asymptotic analysis in fracture: an update. Int J Fract 100:85–103

    Google Scholar 

  • Willis JR, Movchan NV (2007) Crack front waves in an anisotropic medium. Wave Motion 44:458–471

    Google Scholar 

  • Woolfries S, Willis JR (1999) Perturbation of a dynamic planar crack moving in a model elastic solid. J Mech Phys Solids 47:1633–1661

    Google Scholar 

  • Woolfries S, Movchan AB, Willis JR (2002) Perturbation of a dynamic planar crack moving in a model viscoelastic solid. Int J Solids Struct 39:5409–5426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Willis .

Editor information

Editors and Affiliations

Appendix: Expansion of the Basic Identity to Second Order

Appendix: Expansion of the Basic Identity to Second Order

The term that must be equated to the right side of (2.20) is composed from the limiting operations applied to \( \frac{1}{2}(G - )^{ - 1} *[u]_{ - } + G_{ + } *\sigma_{ + } \). Completing the algebra gives

$$ \begin{aligned} \widehat{{G_{ + } *\sigma_{ + } }}\sim & - \frac{1}{2}i\xi_{1} \varepsilon^{2} \phi K - \varepsilon \phi K + \frac{1}{2}(\pi /2)^{1/2} \varepsilon^{2} \phi^{2} A & & \\ & + \frac{1}{2}\varepsilon^{2} Q_{1} *(\phi^{2} K) + \left\{ {K - \varepsilon (\pi /2)^{1/2} \phi A + \frac{3}{4}\varepsilon^{2} (\pi /2)^{1/2} \phi^{2} B} \right. \\ & \left. { - Q_{1} *[\varepsilon \phi K - \frac{1}{2}(\pi /2)^{1/2} \varepsilon^{2} \phi^{2} A] + \frac{1}{2}\varepsilon^{2} Q_{2} *(\phi^{2} K)} \right\}\frac{i}{{\xi_{1} + 0i}} \\ & - \left\{ {(\pi /2)^{1/2} (A - \frac{3}{2}\varepsilon \phi B) + Q_{1} *(K - \varepsilon (\pi /2)^{1/2} \phi A} \right. \\ & \left. { + \frac{3}{4}\varepsilon^{2} \phi^{2} B) - Q_{2} *[\varepsilon \phi K - \frac{1}{2}(\pi /2)^{1/2} \varepsilon^{2} \phi^{2} A]} \right\}\frac{1}{{(\xi + 0i)^{2} }} \\ & - \left\{ {\frac{3}{2}(\pi /2)^{1/2} B + (\pi /2)^{1/2} Q_{1} *(A - \frac{3}{2}\varepsilon \phi B)} \right. \\ & \left. { + Q_{2} *[K - \varepsilon (\pi /2)^{1/2} \phi A + \frac{3}{4}\varepsilon^{2} (\pi /2)^{1/2} \phi^{2} B]} \right\}\frac{i}{{(\xi 1 + 0i)^{3} }} \\ & + \widehat{{G_{ + } *\sigma_{ + } }}.| \\ \end{aligned} $$
(5.1)

Also,

$$ \begin{aligned} \frac{1}{2}\widehat{{(G - )^{ - 1} *[u]_{ - } }}\sim & - \frac{{(\pi /2)^{1/2} }}{{{\mathcal{A}}(V)}}\left[ { - \frac{1}{2}i\xi_{1} \varepsilon^{2} \phi^{2} K^{u} } \right. \\ & - \varepsilon \phi K^{u} - \frac{3}{4}\varepsilon^{2} \phi^{2} A^{u} + \frac{1}{2}\varepsilon^{2} R_{1} *(\phi^{2} K^{u} ) \\ & + \left\{ {K^{u} + \frac{3}{2}\varepsilon \phi A^{u} + \frac{15}{8}\varepsilon^{2} \phi^{2} B^{u} } \right. \\ & \left. { - R_{1} *(\varepsilon \phi K^{u} + \frac{3}{4}\varepsilon^{2} \phi^{2} A^{u} ) + \frac{1}{2}\varepsilon^{2} R_{2} *(\phi^{2} K^{u} )} \right\}\frac{i}{{\xi_{1} - 0i}} \\ & + \left\{ {\frac{3}{2}A^{u} + \frac{15}{4}\varepsilon \phi B^{u} - R_{1} *(K^{u} + \frac{3}{2}\varepsilon \phi A^{u} + \frac{15}{8}\varepsilon^{2} \phi^{2} B^{u} )} \right. \\ & \left. { + R_{2} *(\varepsilon \phi K^{u} + \frac{3}{4}\varepsilon^{2} \phi^{2} A^{u} )} \right\}\frac{1}{{\left( {\xi_{1} - 0i} \right)^{2} }} \\ & - \left\{ {\frac{15}{4}B^{u} - R_{1} *(\frac{3}{2}A^{u} + \frac{15}{8}\varepsilon \phi B^{u} )} \right. \\ & \left. {\left. { + R_{2} *(K^{u} + \frac{3}{2}\varepsilon \phi A^{u} + \frac{15}{8}\varepsilon^{2} \phi^{2} B^{u} )} \right\}\frac{i}{{\left( {\xi_{1} - 0i} \right)^{3} }}} \right] \\ & + \frac{1}{2}\widehat{{(G_{ - } )^{ - 1} *[u]_{ - }^{*} }}. \\ \end{aligned} $$
(5.2)

The exact forms taken for \( \widehat{{G_{ + } *\sigma_{ + }^{*} }} \) and \( \widehat{{G_{ - }^{ - 1} *u_{ - }^{*} }} \) are discussed in the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Willis, J.R. (2014). Crack front perturbations revisited. In: Bigoni, D., Carini, A., Gei, M., Salvadori, A. (eds) Fracture Phenomena in Nature and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04397-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04397-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04396-8

  • Online ISBN: 978-3-319-04397-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics