Skip to main content

Risk Issues in Developing Novel User Interfaces for Human-Computer Interaction

  • Chapter
Risk - A Multidisciplinary Introduction

Abstract

When new user interfaces or information visualization schemes are developed for complex information processing systems, it is not readily clear how much they do, in fact, support and improve users’ understanding and use of such systems. Is a new interface better than an older one? In what respect, and in which situations? To provide answers to such questions, user testing schemes are employed. This chapter reports on a range of risks pertaining to the design and implementation of user interfaces in general, and to newly emerging interfaces (3-dimensionally, immersive, mobile) in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Windows, Icons, Menus, Pointers.

  2. 2.

    http://www.apple.com/iphone/ (accessed 2012-02-26).

  3. 3.

    http://www.android.com (accessed 2012-02-26).

  4. 4.

    http://www.microsoft.com/surface (accesses 2012-02-26).

  5. 5.

    Two-dimensional multi-touch surfaces require three degrees of freedom with p=(x,y)T and maximally one rotation angle θ.

  6. 6.

    D. Simonis and C. Chabris. Selective Attention Test. http://www.youtube.com/watch?v=vJG698U2Mvo, 1999. (Accessed 2012-03-02.)

  7. 7.

    Called so due to its arrangement of keys in the upper row: Q-W-E-R-T-Y (English version).

References

Selected Bibliography

  1. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre, Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 34–47 (2001). doi:10.1109/38.963459. http://portal.acm.org/citation.cfm?id=616073.618862

    Article  Google Scholar 

  2. D.A. Bowman, E. Kruijff, J.J. LaViola, I. Poupyrev, 3D User Interfaces: Theory and Practice (Addison-Wesley/Longman, Redwood City, 2004). ISBN 0201758679

    Google Scholar 

  3. F.P. Brooks Jr., The computer scientist as toolsmith II. Commun. ACM 39, 61–68 (1996). http://doi.acm.org/10.1145/227234.227243

    Article  Google Scholar 

  4. G.C. Burdea, P. Coiffet, Virtual Reality Technology, 2nd edn. (Wiley, Hoboken, 2003). ISBN 0471360899

    Google Scholar 

  5. T. Coskun, A. Benzina, E. Artinger, C. Binder, G. Klinker, User-centered development of UI elements for selecting items on a digital map designed for heavy rugged tablet PCs in mass casualty incidents, in Proceedings of ACM SIGHIT International Health Informatics Symposium (IHI 2012) (ACM, New York, 2012)

    Google Scholar 

  6. M.W. Eysenck, M.T. Keane, Cognitive Psychology, 6th edn. (Psychology Press, New York, 2010). ISBN 978-1-84169-539-6

    Google Scholar 

  7. R.L. Gregory, Eye and Brain, the Psychology of Seeing, 5th edn. (Princeton University Press, Princeton, 1997)

    Google Scholar 

  8. M. Huber, Parasitic tracking for augmented reality. Dissertation, Technische Universität München, München (Nov. 2011)

    Google Scholar 

  9. H. Ishii, B. Ullmer, Tangible bits: towards seamless interfaces between people, bits and atoms, in CHI 97 (1997), pp. 234–241. citeseer.ist.psu.edu/ishii97tangible.html

    Chapter  Google Scholar 

  10. R. Mukerjee, C.F.J. Wu, A Modern Theory of Factorial Design. Springer Series in Statistics (Springer, Heidelberg, 2006). ISBN 978-0387319919

    Google Scholar 

  11. P.G. Neumann, Computer Related Risks (ACM Press/Addison-Wesley, New York, 1995). ISBN 0-201-55805-X

    Google Scholar 

  12. D.A. Norman, The Design of Everyday Things, 2nd edn. First Basic (Perseus Books Group, Jackson, 2002). ISBN 0465067107

    Google Scholar 

  13. B. Shneiderman, C. Plaisant, Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th edn. (Pearson, Boston, 2005). ISBN 0321197860. http://www.gbv.de/dms/ilmenau/toc/492668051.PDF

    Google Scholar 

  14. R. Spence, Information Visualization: Design for Interaction, 2nd edn. (Prentice-Hall, Upper Saddle River, 2007). ISBN 0132065509

    Google Scholar 

  15. M. Tönnis, Towards automotive augmented reality. Dissertation, Technische Universität München, München (Nov. 2008)

    Google Scholar 

  16. A. van Dam, Post-WIMP user interfaces. Commun. ACM 40, 63–67 (1997). http://doi.acm.org/10.1145/253671.253708

    Google Scholar 

  17. M. Weiser, Ubiquitous computing. Computer 26, 71–72 (1993). http://doi.ieeecomputersociety.org/10.1109/2.237456

    Article  Google Scholar 

  18. G. Welch, E. Foxlin, Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22(6), 24–38 (2002)

    Article  Google Scholar 

  19. C.D. Wickens, J.G. Hollands, Engineering Psychology and Human Performance, 3rd edn. (Prentice-Hall, Upper Saddle River, 2000)

    Google Scholar 

Additional Literature

  1. E. Artinger, T. Coskun, S. Nestler, M. Mähler, Y. Yildirim-Krannig, F. Wucholt, F. Echtler, G. Klinker, Creating a common operation picture in realtime with user-centered interfaces for mass casualty incidents, in Proceedings of the 4th International Workshop for Situation Recognition and Medical Data Analysis in Pervasive Health Environments (PervaSense), PervaSense’12 (2012). ICST.org

    Google Scholar 

  2. M. Bauer, Tracking errors in augmented reality. Dissertation, Technische Universität München, München (Sept. 2007)

    Google Scholar 

  3. R. Bauernschmitt, M. Feuerstein, J. Traub, E.U. Schirmbeck, G. Klinker, R. Lange, Optimal port placement and enhanced guidance in robotically assisted cardiac surgery. Surg. Endosc. 21(4), 684–687 (2007). doi:10.1007/s00464-006-9057-z

    Article  Google Scholar 

  4. B.B. Bederson, B. Shneiderman, The Craft of Information Visualization: Readings and Reflections (Morgan Kaufmann, San Francisco, 2003). ISBN 1558609156

    Google Scholar 

  5. A. Benzina, M. Tönnis, G. Klinker, M. Ashry, Phone-based motion control in VR: analysis of degrees of freedom, in CHI Annual Conference on Human Factors in Computing Systems. Extended Abstracts (CHI EA)’11 (ACM, New York, 2011), pp. 1519–1524. ISBN 978-1-4503-0268-5. http://doi.acm.org/10.1145/1979742.1979801

    Chapter  Google Scholar 

  6. J. Brooke, System usability scale (SUS): a quick-and-dirty method of system evaluation user information. Technical Report, Digital Equipment Corporation Ltd., Reading, UK (1986)

    Google Scholar 

  7. S.K. Card, T.P. Moran, A. Newell, The keystroke-level model for user performance time with interactive systems. Commun. ACM 23(7), 396–410 (1980)

    Article  Google Scholar 

  8. S.K. Card, T.P. Moran, A. Newell (eds.), The Psychology of Human-Computer Interaction (CDC Press, San Francisco, 1983)

    Google Scholar 

  9. H.M. Chandler, R. Chandler, Fundamentals of Game Development (Jones and Bartlett, Boston, 2009)

    Google Scholar 

  10. A. Dey, A. Cunningham, C. Sandor, Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments, in 3DUI (2010), pp. 127–128

    Google Scholar 

  11. F. Echtler, Tangible information displays. Dissertation, Technische Universität München, München (Nov. 2009)

    Google Scholar 

  12. F. Echtler, F. Sturm, K. Kindermann, G. Klinker, J. Stilla, J. Trilk, H. Najafi, The intelligent welding gun: augmented reality for experimental vehicle construction, in Virtual and Augmented Reality Applications in Manufacturing, ed. by S. Ong, A. Nee (Springer, New York, 2003), Chap. 17

    Google Scholar 

  13. S. Feiner, B. MacIntyre, M. Haupt, E. Solomon, Windows on the world: 2D windows for 3D augmented reality, in Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, UIST ’93, New York, NY, USA (ACM, New York, 1993), pp. 145–155. ISBN 0-89791-628-X. http://doi.acm.org/10.1145/168642.168657

    Chapter  Google Scholar 

  14. P.M. Fitts, The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6), 381–391 (1954)

    Article  Google Scholar 

  15. S.G. Hart, L.E. Staveland, Development of NASA-TLX task load index: results of empirical and theoretical research, in Human Mental Workload, ed. by P.A. Hancock, N. Meshkati (North Holland, Amsterdam, 1988)

    Google Scholar 

  16. M. Hassenzahl, M. Burmester, F. Koller, AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität, in Mensch und Computer 2003: Interaktion in Bewegung, ed. by G. Szwillus, J. Ziegler (Teubner, Leipzig, 2003)

    Google Scholar 

  17. M. Hassenzahl, R. Kekez, M. Burmester, The importance of a software’s pragmatic quality depends on usage modes, in Proceedings of the 6th International Conference on Work with Display Units (WWDU’02), Berlin, Germany (ERGONOMIC Institut fuer Arbeits- und Sozialforschung, Berlin, 2003), pp. 275–276

    Google Scholar 

  18. K.V. Iserson, J.C. Moskop, Triage in medicine, part I: concept, history, and types. Ann. Emerg. Med. 49(3), 275–281 (2007)

    Article  Google Scholar 

  19. J.A. Jones, J.E.I. Swan, G. Singh, S.R. Ellis, Peripheral visual information and its effect on the perception of egocentric depth in virtual and augmented environments, in VR (2011), pp. 215–216

    Google Scholar 

  20. P. Keitler, Management of tracking and tracking accuracy in industrial augmented reality environments. Dissertation, Technische Universität München, München (Apr. 2011)

    Google Scholar 

  21. T. Luhmann, Accuracy limits in photogrammetry, in Proceedings of the Workshop Traceability in Large Scale Metrology (2006)

    Google Scholar 

  22. A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, B. Brügge, Herding sheep: live system development for distributed augmented reality, in ISMAR (2003), pp. 123–132

    Google Scholar 

  23. P. Maier, M. Tönnis, G. Klinker, A. Raith, M. Drees, F. Kühn, What do you do when two hands are not enough? Interactive selection of bonds between pairs of tangible molecules, in Proceedings of the 5th IEEE Symposium on 3D User Interfaces (3D UI) (2010), pp. 83–90

    Google Scholar 

  24. B. Myers, S.E. Hudson, R. Pausch, Past, present, and future of user interface software tools. ACM Trans. Comput.-Hum. Interact. 7, 3–28 (2000). http://doi.acm.org/10.1145/344949.344959

    Article  Google Scholar 

  25. S. Nestler, Konzeption, Implementierung und Evaluierung von Benutzerschnittstellen für lebensbedrohliche, zeitkritische und instabile Situationen. Dissertation, Technische Universität München, München (July 2010)

    Google Scholar 

  26. G.M. Nielson, H. Hagen, H. Müller, Scientific Visualization: Overviews, Methodologies, and Techniques (IEEE Comput. Soc., Los Alamitos, 1997)

    Google Scholar 

  27. D.A. Norman, The Invisible Computer (MIT Press, Cambridge, 1998). ISBN 0262140659

    Google Scholar 

  28. C.E. Osgood, G.J. Suci, P.H. Tannenbaum, The Measurement of Meaning (University of Illinois Press, Champaign, 1957)

    Google Scholar 

  29. D. Pustka, M. Huber, C. Waechter, F. Echtler, P. Keitler, J. Newman, D. Schmalstieg, G. Klinker, Automatic configuration of pervasive sensor networks for augmented reality. IEEE Pervasive Comput. 10(3), 68–79 (2011). http://doi.ieeecomputersociety.org/10.1109/MPRV.2010.50

    Article  Google Scholar 

  30. J.P. Rolland, H. Fuchs, Optical versus video see-through head-mounted displays in medical visualization. Presence 9(3), 287–309 (2000)

    Google Scholar 

  31. C. Sandor, A software toolkit and authoring tools for user interfaces in ubiquitous augmented reality. Dissertation, Technische Universität München, München (Oct. 2005)

    Google Scholar 

  32. C. Sandor, G. Klinker, A rapid prototyping software infrastructure for user interfaces in ubiquitous augmented reality. Pers. Ubiquitous Comput. 9(3), 169–185 (2005)

    Article  Google Scholar 

  33. B. Schwerdtfeger, Pick-by-vision: bringing HMD-based augmented reality into the warehouse. Dissertation, Technische Universität München, München (July 2010)

    Google Scholar 

  34. R.M. Sirkin, Statistics for the Social Sciences, 3rd edn. (SAGE, Thousand Oaks, 2006)

    Google Scholar 

  35. F. Steinicke, G. Bruder, K. Hinrichs, P. Willemsen, Change blindness phenomena for stereoscopic projection systems, in Proc. IEEE Virtual Reality Conference (VR’10) (2010), pp. 187–194

    Google Scholar 

  36. J.E.I. Swan, S.R. Ellis, A.B. Adelstein, Conducting human-subject experiments with virtual and augmented reality, in Tutorial at the IEEE Virtual Reality Conference (VR’07) (2007). http://www.cse.msstate.edu/~swan/teaching/tutorials/Swan-VR2007-Tutorial.pdf

    Google Scholar 

  37. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (MIT Press, Cambridge, 2006)

    Google Scholar 

  38. M. Tönnis, A. Benzina, G. Klinker, Utilizing consumer 3D TV hardware for a flexibly reconfigurable visualization system. Technical report TUM-I-11-13, Technische Universität München (2011)

    Google Scholar 

  39. M. Tönnis, R. Lindl, L. Walchshäusl, G. Klinker, Visualization of spatial sensor data in the context of automotive environment perception systems, in Proceedings of the 6th International Symposium on Mixed and Augmented Reality (ISMAR) (2007)

    Google Scholar 

  40. E.R. Tufte, The Visual Display of Quantitative Information, 2nd edn. (Graphics Press, Cheshire, 2001). ISBN 0961392142. http://www.amazon.com/Visual-Display-Quantitative-Information-2nd/dp/0961392142%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0961392142

    Google Scholar 

Download references

Acknowledgements

The discussion on user interfaces in this chapter is the result of nearly two decades of work on novel user interfaces related in particular to Augmented Reality. Many people have participated in the work and have influenced the authors in many ways. The authors (particularly the first author) would like to thank the many current and past members of the Fachgebiet Augmented Reality (FAR), as well as the labs at the Fraunhofer Institute for Computer Graphics (IGD) and the European Computer-industry Research Centre (ECRC) prior to FAR for sharing and jointly developing many of the ideas. The authors are grateful to many collaborators across a large number of publicly or privately funded research projects, such as TUMMIC, Presenccia, KAUST, Crumbs, FORLOG, Speedup, IGSSE, Trackframe, the Chair for Computer-Aided Medical Procedures (CAMP) and the Chair for Applied Software Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Klinker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klinker, G., Huber, M., Tönnis, M. (2014). Risk Issues in Developing Novel User Interfaces for Human-Computer Interaction. In: Klüppelberg, C., Straub, D., Welpe, I. (eds) Risk - A Multidisciplinary Introduction. Springer, Cham. https://doi.org/10.1007/978-3-319-04486-6_15

Download citation

Publish with us

Policies and ethics