Skip to main content

Modal Identification of Golden Gate Bridge Using Pseudo Mobile Sensing Data with STRIDE

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 4

Abstract

This paper presents an application of a novel data collection method: mobile sensing. Mobile sensor networks can provide extensive information similar to dense fixed sensor networks while conserving the ease of smaller networks. However, mobile sensing data is expected to have missing observations in time and space, leaving data matrices incompatible with common identification techniques. STRIDE is an algorithm implemented for modal identification using this class of sensor data, which includes missing observations. Although mobile sensing devices are not widely available and large-scale mobile sensors networks have yet to be implemented, pseudo mobile sensing data is extracted from a dense sensor network using a simulated mobile sensor network. In this paper, ambient vibrations of Golden Gate Bridge are considered and pseudo (simulated) mobile sensing data are populated from a subset that shares the paths of simulated mobile sensors. The paper provides promising results to encourage the implementation of large-scale mobile sensor networks in future SHM endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pakzad SN, Fenves GL, Kim S, Culler DE (2008) Design and implementation of scalable wireless sensor network for structural monitoring. J Infrastruct Syst 14:89–101

    Article  Google Scholar 

  2. Pakzad SN, Fenves GL (2009) Statistical analysis of vibration modes of a suspension bridge using spatially dense wireless sensor network. J Struct Eng 135(7):863–872

    Article  Google Scholar 

  3. Guo HY, Zhang L, Zhang LL, Zhou JX (2004) Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Mater Struct 13:528–534. doi:10.1088/0964-1726/13/3/011

    Article  Google Scholar 

  4. Saitta S, Kripakaran P, Raphael B, Smith IF (2008) Improving system identification using clustering. J Comput Civ Eng 22:292–302. doi:10.1061/(ASCE)0887-3801(2008)22:5(292)

    Article  Google Scholar 

  5. Matarazzo TJ, Pakzad SN (2013) Mobile sensors in bridge health monitoring. In: Proceedings of the ninth international workshop on structural health monitoring (IWSHM), Stanford, p 8

    Google Scholar 

  6. Bagajewicz M, Sa M (2000) Cost-optimal design of reliable sensor networks. J Comput Chem Eng 23:1757–1762

    Article  Google Scholar 

  7. Zhu D, Yi X, Wang Y et al (2010) A mobile sensing system for structural health monitoring: design and validation. Smart Mater Struct 19:055011. doi:10.1088/0964-1726/19/5/055011

    Article  Google Scholar 

  8. Sibley GT, Rahimi MH, Sukhatme GS (2002) Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. In: Proceedings of the 2002 IEEE international conference on robotics and automation (Cat No. 02CH37292), vol 2, pp 1143–1148. doi:10.1109/ROBOT.2002.1014697

  9. Dantu K, Rahimi M, Shah H, Babel S, Dhariwal A, Sukhatme GS (2005) Robomote: enabling mobility in sensor networks. In: Proceedings of the 4th international symposium on information processing in sensor networks, IEEE Press, April 2005, p 55

    Google Scholar 

  10. Lin CW, Yang YB (2005) Use of a passing vehicle to scan the fundamental bridge frequencies: an experimental verification. Eng Struct 27:1865–1878. doi:10.1016/j.engstruct.2005.06.016

    Article  Google Scholar 

  11. Cerda F, Garrett J, Bielak J et al (2012) Indirect structural health monitoring in bridges: scale experiments. In: Proceedings of the seventh international conference on bridge maintenance, safety and management, Lago Di Como, pp 346–353

    Google Scholar 

  12. Unnikrishnan J, Vetterli M (2012) Sampling and reconstructing spatial fields using mobile sensors. In: 2012 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 3789–3792

    Google Scholar 

  13. Singhvi V, Krause A, Guestrin C, Garrett Jr, JH, Matthews HS (2005) Intelligent light control using sensor networks. In: Proceedings of the 3rd international conference on embedded networked sensor systems, November 2005, ACM, pp 218–229

    Google Scholar 

  14. Cai Y, Chen SS, Rote DM, Coffey HT (1994) Vehicle/guideway interaction for high speed vehicles on a flexible guideway. J Sound Vib 175(5):625–646

    Article  MATH  Google Scholar 

  15. Deng L, Cai CS (2009) Identification of parameters of vehicles moving on bridges. Eng Struct 31:2474–2485. doi:10.1016/j.engstruct.2009.06.005

    Article  Google Scholar 

  16. Cantieni R (1992) Dynamic behavior of highway bridges, 240 pp

    Google Scholar 

  17. Rubin DB, Dempster AP, Laird NM (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38

    MATH  MathSciNet  Google Scholar 

  18. Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal 3:253–264

    Article  MATH  Google Scholar 

  19. Digalakis V, Rohlicek JR, Ostendorf M (1993) ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Trans Speech Audio Process 1:431–442. doi:10.1109/89.242489

    Article  Google Scholar 

  20. Dorvash S, Pakzad SN (2012) Stochastic iterative modal identification algorithm and application in wireless sensor networks. Struct Contr Health Monit. doi:10.1002/stc

    Google Scholar 

  21. Jones RH (1980) Maximum likelihood fitting of time ARMA models to time series with missing observations. Technometrics 22:389–395

    Article  MATH  MathSciNet  Google Scholar 

  22. Shumway RH, Stoffer DS (2010) Time series analysis and its applications: with R examples. Springer

    Google Scholar 

  23. Matarazzo TJ, Pakzad SN (2013) Structural modal identification using data sets with missing observations. In: Lynch JP, Yun C-B, Wang K-W (eds) Proceedings of the SPIE sensors smart structures technologies, San Diego, p 14

    Google Scholar 

  24. Harvey AC, Pierse RG (1984) Estimating missing observations in economic time series. J Am Stat Assoc 79:125–131

    Article  Google Scholar 

  25. Chang M, Pakzad SN (2013) Observer Kalman filter Identification for output-only systems using interactive structural modal identification toolsuite (SMIT). J Bridge Eng 130703221853009. doi:10.1061/(ASCE)BE.1943-5592.0000530

  26. Law SS, Zhu XQ (2005) Bridge dynamic responses due to road surface roughness and braking of vehicle. J Sound Vib 282:805–830. doi:10.1016/j.jsv.2004.03.032

    Article  Google Scholar 

  27. González A, Covián E, Madera J (2008) Determination of bridge natural frequencies using a moving vehicle instrumented with accelerometers and a geographical positioning system. In: Proceedings of the ninth international conference on computer structures technology, p 16

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Matarazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Matarazzo, T.J., Pakzad, S.N. (2014). Modal Identification of Golden Gate Bridge Using Pseudo Mobile Sensing Data with STRIDE. In: Catbas, F. (eds) Dynamics of Civil Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04546-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04546-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04545-0

  • Online ISBN: 978-3-319-04546-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics