Skip to main content

Oscillating Viscometers

  • Chapter
  • First Online:
Viscometry for Liquids

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 194))

Abstract

As per the heading of the chapter, it contains oscillating type viscometers. Theory of damped vibrations and various methods of determining the time period and logarithmic decrement have been briefly described. Expressions, implicitly containing viscosity of the liquid in which cylindrical and spherical bodies are oscillating, are given. The importance of oscillation viscometer may be gauged from the fact that these are the only ones other than capillary viscometers which are used for determination of viscosity of water. Viscometers used by Roscoe and Bainbridge, Torklep and Oye, Kestin and Shankland and Berstad et al. have been sketched. NBS torsion viscometer and its theory have also been briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kestin J, Newell GF (1957) Theory of oscillating type viscometers I: the oscillating cup. Z Angew Math Phys 8:433–449

    Article  MATH  MathSciNet  Google Scholar 

  2. Beckwith DA, Newell GF (1957) Theory of oscillating type viscometers, the oscillating cup part II. Z Angew Math Phys 8:450–465

    Article  MATH  MathSciNet  Google Scholar 

  3. Azeitia AG, Newell GF (1958) Theory of oscillating type viscometers III, a thin disc. Z Angew Math Phys 9a:97–118

    Google Scholar 

  4. Azeitia AG, Newell GF (1959) Theory of oscillating type viscometers IV, a thick disc. Z Angew Math Phys 10:15–34

    Article  MathSciNet  Google Scholar 

  5. Newell GF (1959) Theory of oscillating type viscometers V, disc between fixed plates II. Z Angew Math Phys 10:450–465

    Article  Google Scholar 

  6. Newell GF (1959) Theory of oscillating type viscometers: the oscillating cup part II. Z Angew Math Phys 10:160–174

    Article  MathSciNet  Google Scholar 

  7. Roscoe R, Bainbridge W (1958) Viscosity determination by the oscillating vessel method II: the viscosity of water at 20 °C. Proc Phys Soc 72:585–595

    Article  ADS  Google Scholar 

  8. Kestin J, Khalifa HEA (1976) Measurement of logarithmic decrement through measurement of time. Appl Sci Res 32:483–496

    Google Scholar 

  9. Berstad DA, Knapstad B, Lamvik M, Skjolsvik PA, Torklep K, Oye HA (1988) Accurate determination of the viscosity of in temperature range 19.5 to 25.5 °C. Physica A 151:246–280

    Google Scholar 

  10. Verschaffelt JE (1915) Viscosity of water using sphere as oscillating body. Commun Phys Lab Univ Leiden 148b:17

    Google Scholar 

  11. Andarde ENDAC, Chiong YS (1936) On the determination of viscosity by the oscillation of a vessel enclosing a fluid Part 1. Proc Phys Soc 48:247

    Google Scholar 

  12. Andarde ENDAC, Chiong YS (1952) Proc Roy Soc A 211:12

    Google Scholar 

  13. Torklep K, Oye HA (1979) An absolute oscillating cylinder or cup viscometer for high temperatures. J Phys E: Sci Instrum 12:875–885

    Article  ADS  Google Scholar 

  14. Kestin J, Paul R, Shankland IR, Khalifia HEA (1980) High temperature, high pressure, oscillating dis viscometer for concentrated ionic solutions. Ber Bunsenges Phys Chemie 84:1255–1260

    Article  Google Scholar 

  15. Kestin J, Shankland JR (1981) The free disk as an absolute viscometer and the viscosity of water in range of 25–150 °C. J Non Equilib Thermodyn 6:241–256

    Article  ADS  Google Scholar 

  16. White Hobart S, Kearsley Elliot A (1971) An absolute determination of viscosity using a torsional pendulum. J Res NBS 75A:541–551

    Article  Google Scholar 

  17. Kearsley EA (1959) An analysis of an absolute torsional pendulum viscometer. Trans Soc Rheol 111:69–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, S.V. (2014). Oscillating Viscometers. In: Viscometry for Liquids. Springer Series in Materials Science, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-04858-1_5

Download citation

Publish with us

Policies and ethics