Skip to main content

Resource-Aware Harris Corner Detection Based on Adaptive Pruning

  • Conference paper
Architecture of Computing Systems – ARCS 2014 (ARCS 2014)

Abstract

Corner-detection techniques are being widely used in computer vision – for example in object recognition to find suitable candidate points for feature registration and matching. Most computer-vision applications have to operate on real-time video sequences, hence maintaining a consistent throughput and high accuracy are important constrains that ensure high-quality object recognition. A high throughput can be achieved by exploiting the inherent parallelism within the algorithm on massively parallel architectures like many-core processors. However, accelerating such algorithms on many-core CPUs offers several challenges as the achieved speedup depends on the instantaneous load on the processing elements. In this work, we present a new resource-aware Harris corner-detection algorithm for many-core processors. The novel algorithm can adapt itself to the dynamically varying load on a many-core processor to process the frame within a predefined time interval. The results show a 19% improvement in throughput and an 18% improvement in accuracy.

This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkaabi, S., Deravi, F.: Candidate pruning for fast corner detection. Electronics Letters 40(1), 18–19 (2004)

    Article  Google Scholar 

  2. Asfour, T., Azad, P., et al.: ARMAR-III: An integrated humanoid platform for sensory-motor control. In: 6th IEEE-RAS International Conference on Humanoid Robots. IEEE (2006)

    Google Scholar 

  3. Azad, P., Asfour, T., Dillmann, R.: Combining harris interest points and the sift descriptor for fast scale-invariant object recognition. In: Intelligent Robots and Systems, IROS 2009. IEEE (2009)

    Google Scholar 

  4. Bell, S., Edwards, B., et al.: Tile64-processor: A 64-core soc with mesh interconnect. In: Solid-State Circuits Conference, 2008. Digest of Technical Papers, pp. 88–598. IEEE (2008)

    Google Scholar 

  5. Blumofe, R.D., Joerg, C.F., et al.: Cilk: An efficient multithreaded runtime system. In: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 1995 (1995)

    Google Scholar 

  6. Gaisler, J., Catovic, E.: Multi-core processor based on leon3-ft ip core (leon3-ft-mp). In: DASIA 2006-Data Systems in Aerospace, vol. 630, p. 76 (2006)

    Google Scholar 

  7. Gauglitz, S., Höllerer, T., et al.: Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision 94(3), 335–360 (2011)

    Article  MATH  Google Scholar 

  8. Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual slam. Machine Vision and Applications 21(6), 905–920 (2010)

    Article  Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, vol. 15, p. 50 (1988)

    Google Scholar 

  10. Jorg, S., Nickl, M., Nothhelfer, A., et al.: The computing and communication architecture of the dlr hand arm system. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1055–1062. IEEE (2011)

    Google Scholar 

  11. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., et al.: Humanoid robot HRP-2. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 2, pp. 1083–1090 (May 2004)

    Google Scholar 

  12. Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., Kajita, S.: Cybernetic human HRP-4C. In: 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2009, pp. 7–14 (December 2009)

    Google Scholar 

  13. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In: Fourth Canadian Conference on Computer and Robot Vision, CRV 2007, pp. 157–164. IEEE (2007)

    Google Scholar 

  14. Klues, K., Rhoden, B., Zhu, Y., Waterman, A., Brewer, E.: Processes and resource management in a scalable many-core os. In: HotPar 2010, Berkeley, CA (2010)

    Google Scholar 

  15. Mattson, T., Riepen, M., et al.: The 48-core scc processor: the programmer’s view. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010)

    Google Scholar 

  16. Oechslein, B., Schedel, J., Henkel, J., Lohmann, D., Schröder-Preikschat, W., et al.: Octopos: A parallel operating system for invasive computing. In: Proceedings of the International Workshop on Systems for Future Multi-Core Architectures (SFMA). EuroSys (2011)

    Google Scholar 

  17. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., et al.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2478–2483 (2002)

    Google Scholar 

  19. Schmidt, A., Kraft, M., Kasiński, A.: An evaluation of image feature detectors and descriptors for robot navigation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 251–259. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)

    Article  Google Scholar 

  21. Teich, J., Henkel, J., Herkersdorf, A., Schröder-Preikschat, W., et al.: Invasive Computing: An Overview. In: Hübner, M., Becker, J. (eds.) Multiprocessor System-on-Chip – Hardware Design and ToolIntegration, pp. 241–268. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Wu, M., Ramakrishnan, N., Lam, S.-K., Srikanthan, T.: Low-complexity pruning for accelerating corner detection. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1684–1687. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Paul, J. et al. (2014). Resource-Aware Harris Corner Detection Based on Adaptive Pruning. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds) Architecture of Computing Systems – ARCS 2014. ARCS 2014. Lecture Notes in Computer Science, vol 8350. Springer, Cham. https://doi.org/10.1007/978-3-319-04891-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04891-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04890-1

  • Online ISBN: 978-3-319-04891-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics