Skip to main content

Modelling in Mathematics Classroom Instruction: An Innovative Approach for Transforming Mathematics Education

  • Chapter
  • First Online:
Transforming Mathematics Instruction

Abstract

The attitude of many students all over the world is shaped by the experience of learning impractical algorithms without any relevance for their actual or future life. Many students only learn algorithms and concepts in order to pass examinations and forget them afterwards. The inclusion of mathematical modelling in schools is one current innovative approach, which has the potential to offer students insight into the usefulness of mathematics in their life. In this chapter, the development of the current discussion on teaching and learning mathematical modelling is described by detailing the goals of implementing mathematical modelling in schools and ways of integrating modelling into classrooms. Innovative projects for the integration of modelling into classrooms are described, displaying the innovative power of the teaching and learning of mathematical modelling in school. Based on the results of empirical studies, scaffolding as an approach to support students’ independent modelling processes is discussed in detail distinguishing approaches at a macro- and a micro-level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebli, H. (1983). Zwölf Grundformen des Lehrens. Stuttgart: Klett-Cotta.

    Google Scholar 

  • Beutel, M., & Krosanke, N. (2012). Rekonstruktion von Handlungsabläufen in komplexen Modellierungsprozessen – SchĂĽlerprobleme und Lehrerverhalten, Unpublished master thesis. University of Hamburg, Hamburg.

    Google Scholar 

  • Blomhøj, M. (2011). Modelling competency: Teaching, learning and assessing competencies – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 343–349). New York: Springer.

    Chapter  Google Scholar 

  • Blomhøj, M., & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139.

    Article  Google Scholar 

  • Blum, W. (1996). AnwendungsbezĂĽge im Mathematikunterricht – Trends und Perspektiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und Perspektiven (pp. 15–38). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). New York: Springer.

    Chapter  Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modeling problems? In C. P. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37–68.

    Article  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modeling and applications in mathematics education. The 14th ICMI study. New York: Springer.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – The International Journal on Mathematics Education, 38(2), 86–95.

    Article  Google Scholar 

  • Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen Modellierens. Wiesbaden: Vieweg-Teubner.

    Book  Google Scholar 

  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Mathematics, 1(1/2), 3–8.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Riedel.

    Google Scholar 

  • Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modeling competencies. In C. P. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 130–141). Chichester: Horwood.

    Chapter  Google Scholar 

  • GarcĂ­a, F. J., MaaĂź, K., & Wake, G. (2010). Theory meets practice: Working pragmatically within different cultures and traditions. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies. ICTMA 13 (pp. 445–457). New York: Springer.

    Chapter  Google Scholar 

  • GarcĂ­a, F. J., & Ruiz-Higueras, L. (2011). Modifying teachers’ practices: The case of a European training course on modelling and applications. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling. ICTMA14 (pp. 569–578). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • GrĂĽnewald, S. (2013). The development of modelling competencies by year 9 students: Effects of a modelling project. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to teaching and research practices (pp. 185–194). Cham, Switzerland: Springer.

    Google Scholar 

  • Haines, C. R., Crouch, R. M., & Davis, J. (2000). Understanding students’ modelling skills. In J. F. Matos, W. Blum, K. Houston, & S. Carreira (Eds.), Modelling and mathematics education: ICTMA9 applications in science and technology (pp. 366–381). Chichester: Horwood.

    Google Scholar 

  • Hammond, J., & Gibbons, P. (2005). Putting scaffolding to work: The contribution of scaffolding in articulating ESL education. Prospect, 20(1), 6–30.

    Google Scholar 

  • Hattie, J. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Houston, K., & Neill, N. (2003). Investigating students’ modelling skills. In Q. Ye, W. Blum, S. K. Houston, & Q. Jiang (Eds.), Mathematical modelling in education and culture: ICTMA 10 (pp. 54–66). Chichester: Horwood.

    Chapter  Google Scholar 

  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 110–119). Chichester: Horwood.

    Chapter  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Examples and experiences. Journal fĂĽr Mathematik-Didaktik, 31(1), 51–76.

    Article  Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310.

    Article  Google Scholar 

  • Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to teaching and research practices (pp. 277–293). Cham, Switzerland: Springer.

    Google Scholar 

  • Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling. Cham, Switzerland: Springer.

    Google Scholar 

  • Kaiser, G., Bracke, M., Göttlich, S., & Kaland, C. (2013). Realistic complex modelling problems in mathematics education. In R. Strässer & A. Damlamian (Eds.), Educational interfaces between mathematics and industry (ICMI-ICIAM-Study) (pp. 299–307). New York: Springer.

    Google Scholar 

  • Kaiser-Messmer, G. (1986). Anwendungen im Mathematikunterricht. Vol. 1: Theoretische Konzeptionen. Vol. 2: Empirische Untersuchungen. Bad Salzdetfurth: Franzbecker.

    Google Scholar 

  • LeiĂź, D. (2007). Hilf mir es selbst zu tun. Hildesheim: Franzbecker.

    Google Scholar 

  • Lesh, R., & Doerr, H. (Eds.). (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Link, F. (2011). Problemlöseprozesse selbstständigkeitsorientiert begleiten: Kontexte und Bedeutungen strategischer Lehrerinterventionen in der Sekundarstufe I. Hildesheim: Franzbecker.

    Book  Google Scholar 

  • MaaĂź, K. (2005). Modellieren im Mathematikunterricht der Sekundarstufe I. Journal fĂĽr Mathematik-Didaktik, 26(2), 114–142.

    Article  Google Scholar 

  • MaaĂź, K. (2006). What are modelling competencies? Zentralblatt fĂĽr Didaktik der Mathematik, 38(2), 113–142.

    Article  Google Scholar 

  • MaaĂź, K., & Gurlitt, J. (2011). LEMA – Professional development of teachers in relation to mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling. ICTMA14 (pp. 629–639). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Matos, J., & Carreira, S. (1997). The quest for meaning in students’ mathematical modelling. In K. Houston, W. Blum, I. Huntley, & N. Neill (Eds.), Teaching and learning mathematical modelling (ICTMA 7) (pp. 63–75). Chichester: Horwood Publishing.

    Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill: Chestnut Hill TIMSS & PIRLS International Study Center, Boston College.

    Google Scholar 

  • OECD. (2010). PISA 2009 results: What students know and can do – Student performance in reading, mathematics and science (Vol. 1). Paris: OECD.

    Google Scholar 

  • Pollak, H. O. (1968). On some of the problems of teaching applications of mathematics. Educational Studies in Mathematics, 1(1/2), 24–30.

    Article  Google Scholar 

  • Schukajlow, S., & Krug, A. (2013). Considering multiple solutions for modelling problems – Design and first results from the MultiMa-project. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to teaching and research practices. Cham, Switzerland: Springer.

    Google Scholar 

  • Schukajlow, S., Krämer, J., Blum, W., Besser, M., Brode, R., LeiĂź, D., et al. (2010). Lösungsplan in SchĂĽlerhand: zusätzliche HĂĽrde oder SchlĂĽssel zum Erfolg? In Beiträge zum Mathematikunterricht 2010 (pp. 771–774). MĂĽnster: WTM.

    Google Scholar 

  • Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., MĂĽller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79(2), 215–237.

    Article  Google Scholar 

  • Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling. ICTMA14 (pp. 165–180). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice (Vol. 2, pp. 688–697). Adelaide: MERGA.

    Google Scholar 

  • Stillman, G., Brown, J., & Galbraith, P. (2010). Identifying challenges within transition phases of mathematical modeling activities at year 9. In R. Lesh, P. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modeling competencies ICTMA13 (pp. 385–398). New York: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Kaiser, G., Blum, W., & Brown, J. (Eds.). (2013). Teaching mathematical modelling: Connecting to teaching and research practices. Cham, Switzerland: Springer.

    Google Scholar 

  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22, 271–293.

    Article  Google Scholar 

  • Vorhölter, K. (2009). Sinn im Mathematikunterricht. Opladen: Budrich.

    Google Scholar 

  • Zech, F. (1998). Grundkurs Mathematikdidaktik. Weinheim: Beltz Verlag.

    Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies. Using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 427–437). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Vorhölter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vorhölter, K., Kaiser, G., Borromeo Ferri, R. (2014). Modelling in Mathematics Classroom Instruction: An Innovative Approach for Transforming Mathematics Education. In: Li, Y., Silver, E., Li, S. (eds) Transforming Mathematics Instruction. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-04993-9_3

Download citation

Publish with us

Policies and ethics