Skip to main content

Machine Learning for Auspicious Social Network Mining

  • Chapter
Social Networking

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 65))

Abstract

The importance of machine learning for social network analysis is realized as an inevitable tool in forthcoming years. This is due to the unprecedented growth of social-related data, boosted by the proliferation of social media websites and the embedded heterogeneity and complexity. Alongside the machine learning derives much effort from psychologists to build computational model for solving tasks like recognition, prediction, planning and analysis even in uncertain situations. In this chapter, we have presented different network analysis concepts. Then we have discussed implication of machine learning for network data preparation and different learning techniques for descriptive and predictive analysis. Finally we have presented some machine learning based findings in the area of community detection, prediction, spatial-temporal and fuzzy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moreno, J.L.: Emotions mapped by new geography. New York Times 3, 17 (1933)

    Google Scholar 

  2. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 452–473 (1977)

    Google Scholar 

  3. Biemann, C.: Chinese whispers: an efficient graph clustering algorithm and its application to natural language processing problems. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, pp. 73–80. Association for Computational Linguistics (2006)

    Google Scholar 

  4. McGuffin, M.J.: Simple algorithms for network visualization: A tutorial. Tsinghua Science and Technology 17(4), 383–398 (2012), doi:10.1109/TST.2012.6297585

    Google Scholar 

  5. Crawford, C., Walshaw, C., Soper, A.: A multilevel force-directed graph drawing algorithm using multilevel global force approximation. In: 2012 16th International Conference on Information Visualisation (IV), pp. 454–459 (2012), doi:10.1109/IV.2012.78

    Google Scholar 

  6. Wikipedia: Graph drawing – wikipedia the free encyclopedia (2013) (Online: accessed September 11, 2013)

    Google Scholar 

  7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM (1999)

    Google Scholar 

  8. Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Social Networks 20(1), 89–105 (1998)

    Article  Google Scholar 

  9. Kunegis, J.: On the spectral evolution of large networks. Ph.D. thesis, Koblenz, Landau (Pfalz), Univ., Diss. (2011)

    Google Scholar 

  10. Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, EC 2009, pp. 325–334. ACM, New York (2009), http://doi.acm.org/10.1145/1566374.1566421 , doi:10.1145/1566374.1566421

    Google Scholar 

  11. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek, U.: A scalable distributed parallel breadth-first search algorithm on bluegene/l. In: Proceedings of the ACM/IEEE SC 2005 Conference on Supercomputing, p. 25. IEEE (2005)

    Google Scholar 

  12. Korf, R.E., Schultze, P.: Large-scale parallel breadth-first search. In: AAAI, vol. 5, pp. 1380–1385 (2005)

    Google Scholar 

  13. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hougardy, S.: The floyd–warshall algorithm on graphs with negative cycles. Information Processing Letters 110(8), 279–281 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM (JACM) 51(6), 993–1024 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kameda, T.: On the vector representation of the reachability in planar directed graphs. Information Processing Letters 3(3), 75–77 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gladwell, M.: The tipping point: How little things can make a big difference. Hachette Digital, Inc. (2006)

    Google Scholar 

  18. Feld, S.L.: The focused organization of social ties. American Journal of Sociology, 1015–1035 (1981)

    Google Scholar 

  19. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959), http://dx.doi.org/10.1007/BF01386390 , doi:10.1007/BF01386390

    Article  MATH  MathSciNet  Google Scholar 

  20. Crauser, A., Mehlhorn, K., Meyer, U., Sanders, P.: A parallelization of dijkstra’s shortest path algorithm. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 722–731. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Bellman, R.: On a routing problem. Quart. Appl. Math. 16, 87–90 (1958)

    MATH  MathSciNet  Google Scholar 

  22. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962), http://doi.acm.org/10.1145/367766.368168 , doi:10.1145/367766.368168

    Article  Google Scholar 

  23. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977), http://doi.acm.org/10.1145/321992.321993 , doi:10.1145/321992.321993

    Article  MATH  Google Scholar 

  24. Friedkin, N.E.: Structural bases of interpersonal influence in groups: A longitudinal case study. American Sociological Review, 861–872 (1993)

    Google Scholar 

  25. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bavelas, A.: Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America 22(6), 725–730 (1950)

    Article  Google Scholar 

  27. Beauchamp, M.A.: An improved index of centrality. Behavioral Science 10(2), 161–163 (1965)

    Article  Google Scholar 

  28. Moxley, R.L., Moxley, N.F.: Determining point-centrality in uncontrived social networks. Sociometry, 122–130 (1974)

    Google Scholar 

  29. Nieminen, U.: On the centrality in a directed graph. Social Science Research 2(4), 371–378 (1973)

    Article  MathSciNet  Google Scholar 

  30. Botafogo, R.A., Rivlin, E., Shneiderman, B.: Structural analysis of hypertexts: identifying hierarchies and useful metrics. ACM Transactions on Information Systems (TOIS) 10(2), 142–180 (1992)

    Article  Google Scholar 

  31. Hage, P., Harary, F.: Eccentricity and centrality in networks. Social Networks 17(1), 57–63 (1995)

    Article  Google Scholar 

  32. Bonacich, P.: Some unique properties of eigenvector centrality. Social Networks 29(4), 555–564 (2007)

    Article  Google Scholar 

  33. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  34. Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)

    Article  Google Scholar 

  35. Burt, R.S.: The social structure of competition. Networks and Organizations: Structure, Form, and Action, 57–91 (1992)

    Google Scholar 

  36. Zhang, E., Wang, G., Gao, K., Zhao, X., Zhang, Y.: Generalized structural holes finding algorithm by bisection in social communities. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing (ICGEC), pp. 276–279 (2012), doi:10.1109/ICGEC.2012.98

    Google Scholar 

  37. Lin, C.Y., Wu, L., Wen, Z., Tong, H., Griffiths-Fisher, V., Shi, L., Lubensky, D.: Social network analysis in enterprise. Proceedings of the IEEE 100(9), 2759–2776 (2012), doi:10.1109/JPROC.2012.2203090

    Article  Google Scholar 

  38. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of the ACM (JACM) 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for linear programs. Linear Inequalities and Related Systems (38), 171–181 (1956)

    Google Scholar 

  40. Ford, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Rand Corporation (1955)

    Google Scholar 

  41. Wasserman, S.: Social network analysis: Methods and applications, vol. 8. Cambridge University Press (1994)

    Google Scholar 

  42. Frank, O., Strauss, D.: Markov graphs. Journal of the American Statistical Association 81(395), 832–842 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks: I. an introduction to markov graphs andp. Psychometrika 61(3), 401–425 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Snijders, T.A., Pattison, P.E., Robins, G.L., Handcock, M.S.: New specifications for exponential random graph models. Sociological Methodology 36(1), 99–153 (2006)

    Article  Google Scholar 

  45. Handcock, M.S., Robins, G., Snijders, T.A., Moody, J., Besag, J.: Assessing degeneracy in statistical models of social networks. Tech. rep., Working paper (2003)

    Google Scholar 

  46. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. Journal of the American Statistical Association 97(460), 1090–1098 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Smyth, P.: Statistical modeling of graph and network data. In: IJCAI Workshop on Learning Statistical Models from Relational Data, Citeseer (2003)

    Google Scholar 

  48. Tang, L., Liu, H.: Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery 2(1), 1–137 (2010)

    Article  Google Scholar 

  49. Yang, Q.: Community detection and graph-based clustering. Powerpoint Presentation (2010)

    Google Scholar 

  50. Kubica, J., Moore, A.: Probabilistic noise identification and data cleaning. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 131–138 (2003), doi:10.1109/ICDM.2003.1250912

    Google Scholar 

  51. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Engineering Bulletin 23 (2000)

    Google Scholar 

  52. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an em approach. In: Advances in Neural Information Processing Systems, Citeseer, vol. 6 (1994)

    Google Scholar 

  53. Schwarm, S., Wolfman, S.: Cleaning data with bayesian methods. Final project report for CSE574, University of Washington (2000)

    Google Scholar 

  54. Rundensteiner, E.: Special issue on data transformation. IEEE Techn. Bull. Data Engineering 22(1) (1999)

    Google Scholar 

  55. Morris, T., Verlic, M.: Clustering in depth: Methods and theory behind the clustering functionality in openrefine (2013), https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth

  56. Abiteboul, S., Cluet, S., Milo, T., Mogilevsky, P., Siméon, J., Zohar, S.: Tools for data translation and integration. IEEE Data Eng. Bull. 22(1), 3–8 (1999)

    Google Scholar 

  57. Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data translation. In: VLDB, Citeseer, vol. 98, pp. 24–27 (1998)

    Google Scholar 

  58. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: Declaratively cleaning your data using ajax. In: Journees Bases de Donnees, Citeseer (2000)

    Google Scholar 

  59. Hellerstein, J.M., Stonebraker, M., Caccia, R.: Independent, open enterprise data integration. IEEE Data Eng. Bull. 22(1), 43–49 (1999)

    Google Scholar 

  60. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

    Article  Google Scholar 

  61. Li Lee, M., Lu, H., Ling, T.-W., Ko, Y.T.: Cleansing data for mining and warehousing. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 751–760. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  62. Monge, A.E., Elkan, C., et al.: The field matching problem: Algorithms and applications. In: KDD, pp. 267–270 (1996)

    Google Scholar 

  63. Cohen, W.W.: Integration of heterogeneous databases without common domains using queries based on textual similarity. In: ACM SIGMOD Record, vol. 27, pp. 201–212. ACM (1998)

    Google Scholar 

  64. Jolliffe, I.: Principal component analysis. Wiley Online Library (2005)

    Google Scholar 

  65. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: Ajax: an extensible data cleaning tool. ACM SIGMOD Record 29(2), 590 (2000)

    Article  Google Scholar 

  66. Monge, A.E.: Matching algorithms within a duplicate detection system. IEEE Data Eng. Bull. 23(4), 14–20 (2000)

    Google Scholar 

  67. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms II. Algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  68. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms I. Algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  69. Knorr, E.M., Ng, R.T.: A unified notion of outliers: Properties and computation. In: KDD, pp. 219–222 (1997)

    Google Scholar 

  70. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: ACM Sigmod Record, pp. 93–104. ACM (2000)

    Google Scholar 

  71. Hadi, A.S.: Identifying multiple outliers in multivariate data. Journal of the Royal Statistical Society. Series B (Methodological), 761–771 (1992)

    Google Scholar 

  72. Rocke, D.M., Woodruff, D.L.: Identification of outliers in multivariate data. Journal of the American Statistical Association 91(435), 1047–1061 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  73. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. arXiv preprint arXiv:1106.0219 (2011)

    Google Scholar 

  74. Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining. Springer (1998)

    Google Scholar 

  75. Oates, T., Jensen, D.: The e ects of training set size on decision tree complexity. In: Proceedings of the Fourteenth International Conference on Machine Learning, Citeseer (1997)

    Google Scholar 

  76. Reinartz, T.: A unifying view on instance selection. Data Mining and Knowledge Discovery 6(2), 191–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  77. Lakshminarayan, K., Harp, S.A., Samad, T.: Imputation of missing data in industrial databases. Applied Intelligence 11(3), 259–275 (1999)

    Article  Google Scholar 

  78. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  79. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. ACM SIGMOD Record 28(2), 49–60 (1999)

    Article  Google Scholar 

  80. Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14(5), 1003–1016 (2002)

    Article  Google Scholar 

  81. Chen, Y., Reilly, K., Sprague, A., Guan, Z.: Seqoptics: a protein sequence clustering system. BMC Bioinformatics 7(suppl. 4), S10 (2006)

    Google Scholar 

  82. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM (1996)

    Google Scholar 

  83. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)

    Article  Google Scholar 

  84. Duan, D., Li, Y., Li, R., Lu, Z.: Incremental k-clique clustering in dynamic social networks. Artificial Intelligence Review 38(2), 129–147 (2012)

    Article  Google Scholar 

  85. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Proc. SDM, vol. 4 (2004)

    Google Scholar 

  86. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B., et al.: A review of classification algorithms for eeg-based brain–computer interfaces. Journal of Neural Engineering 4 (2007)

    Google Scholar 

  87. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classification techniques (2007)

    Google Scholar 

  88. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan Kaufmann (2006)

    Google Scholar 

  89. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 529–539. Association for Computational Linguistics (2011)

    Google Scholar 

  90. Jaakkola, M.S.T., Szummer, M.: Partially labeled classification with markov random walks. Advances in Neural Information Processing Systems (NIPS) 14, 945–952 (2002)

    Google Scholar 

  91. Xu, H., Yang, Y., Wang, L., Liu, W.: Node classification in social network via a factor graph model. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS, vol. 7818, pp. 213–224. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  92. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 593–598. ACM (2004)

    Google Scholar 

  93. Benjamin, R., Parham, P.: Guilt by association: Hla-b27 and ankylosing spondylitis. Immunology Today 11, 137–142 (1990)

    Article  Google Scholar 

  94. Rozanov, Y.A.: Markov random fields. Springer (1982)

    Google Scholar 

  95. Carter, C.K., Kohn, R.: On gibbs sampling for state space models. Biometrika 81(3), 541–553 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  96. Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43(1), 1–20 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  97. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Transactions on Systems, Man and Cybernetics (6), 420–433 (1976)

    Google Scholar 

  98. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 467–475. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  99. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for nd grids. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  100. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)

    Google Scholar 

  101. Johnson, C.Y.: Project ‘gaydar’: An mit experiment raises new questions about online privacy. Boston Globe (2009)

    Google Scholar 

  102. He, J., Chu, W.W., Liu, Z.V.: Inferring privacy information from social networks. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 154–165. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  103. Lindamood, J., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: Inferring private information using social network data. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1145–1146. ACM (2009)

    Google Scholar 

  104. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 251–260. ACM (2010)

    Google Scholar 

  105. Mo, M., Wang, D., Li, B., Hong, D., King, I.: Exploit of online social networks with semi-supervised learning. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  106. Mo, M., King, I.: Exploit of online social networks with community-based graph semi-supervised learning. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 669–678. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-17537-4_81

    Chapter  Google Scholar 

  107. Thomas, K., Grier, C., Nicol, D.M.: unfriendly: Multi-party privacy risks in social networks. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 236–252. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  108. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the 18th International Conference on World Wide Web, pp. 531–540. ACM (2009)

    Google Scholar 

  109. Kotyuk, G., Buttyan, L.: A machine learning based approach for predicting undisclosed attributes in social networks. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 361–366 (2012), doi:10.1109/PerComW.2012.6197511

    Google Scholar 

  110. Fang, W., Qian, M.: Design of a platform of popular science education based on social computing. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 4, pp. 897–902. IEEE (2009)

    Google Scholar 

  111. Amershi, S., Fogarty, J., Weld, D.: Regroup: Interactive machine learning for on-demand group creation in social networks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 21–30. ACM (2012)

    Google Scholar 

  112. Velardi, P., Navigli, R., Cucchiarelli, A., D’Antonio, F.: A new content-based model for social network analysis. In: 2008 IEEE International Conference on Semantic Computing, pp. 18–25. IEEE (2008)

    Google Scholar 

  113. Pinheiro, C.A.R., Helfert, M.: Mixing scores from artificial neural network and social network analysis to improve the customer loyalty. In: International Conference on Advanced Information Networking and Applications Workshops, WAINA 2009, pp. 954–959. IEEE (2009)

    Google Scholar 

  114. Zhou, L.: Trust based recommendation system with social network analysis. In: International Conference on Information Engineering and Computer Science, ICIECS 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  115. Bauer, T., Garcia, D., Colbaugh, R., Glass, K.: Detecting collaboration from behavior. In: 2013 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 13–15. IEEE (2013)

    Google Scholar 

  116. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001)

    Article  Google Scholar 

  117. Wang, C., Huberman, B.A.: How random are online social interactions? Scientific Reports 2 (2012)

    Google Scholar 

  118. Zhang, A.X., Noulas, A., Scellato, S., Mascolo, C.: Hoodsquare: Modeling and recommending neighborhoods in location-based social networks. arXiv preprint arXiv:1308.3657 (2013)

    Google Scholar 

  119. Li, N., Chen, G.: Analysis of a location-based social network. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 4, pp. 263–270. IEEE (2009)

    Google Scholar 

  120. Pelleg, D., Moore, A.W., et al.: X-means: Extending k-means with efficient estimation of the number of clusters. In: ICML, pp. 727–734 (2000)

    Google Scholar 

  121. Song, L., Kotz, D., Jain, R., He, X.: Evaluating location predictors with extensive wi-fi mobility data. In: Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2004, vol. 2, pp. 1414–1424. IEEE (2004)

    Google Scholar 

  122. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences 106(36), 15,274–15,278 (2009)

    Google Scholar 

  123. Zheng, R., Wilkinson, D., Provost, F.: Social network collaborative filtering. Stern, IOMS Department, CeDER (2008)

    Google Scholar 

  124. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2011)

    Google Scholar 

  125. Benchettara, N., Kanawati, R., Rouveirol, C.: Supervised machine learning applied to link prediction in bipartite social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 326–330. IEEE (2010)

    Google Scholar 

  126. Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach. Decision Support Systems 54(2), 880–890 (2013), http://www.sciencedirect.com/science/article/pii/S0167923612002540 , doi: http://dx.doi.org/10.1016/j.dss.2012.09.019

  127. Ratti, C., Sommer, C.: Approximating shortest paths in spatial social networks. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), and 2012 International Confernece on Social Computing (SocialCom), pp. 585–586 (2012), doi:10.1109/SocialCom-PASSAT.2012.132

    Google Scholar 

  128. Stefa, J., Michalik, P.: Conversational content in the context of safety of social networks. In: 2013 IEEE 9th International Conference on Computational Cybernetics (ICCC), pp. 137–140 (2013), doi:10.1109/ICCCyb.2013.6617576

    Google Scholar 

  129. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: ACM SIGMOD Record, vol. 27, pp. 307–318. ACM (1998)

    Google Scholar 

  130. Domingos, P.: Mining social networks for viral marketing. IEEE Intelligent Systems 20(1), 80–82 (2005)

    Article  MathSciNet  Google Scholar 

  131. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable system for fraud detection in online auction networks. In: Proceedings of the 16th International Conference on World Wide Web, pp. 201–210. ACM (2007)

    Google Scholar 

  132. Brunelli, M., Fedrizzi, M.: A fuzzy approach to social network analysis. In: International Conference on Advances in Social Network Analysis and Mining, ASONAM 2009, pp. 225–230 (2009), doi:10.1109/ASONAM.2009.72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar S. De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De, S.S., Dehuri, S. (2014). Machine Learning for Auspicious Social Network Mining. In: Panda, M., Dehuri, S., Wang, GN. (eds) Social Networking. Intelligent Systems Reference Library, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-05164-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05164-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05163-5

  • Online ISBN: 978-3-319-05164-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics