Skip to main content

U-Statistics in Stochastic Geometry

  • Chapter
  • First Online:
Stochastic Analysis for Poisson Point Processes

Part of the book series: Bocconi & Springer Series ((BS,volume 7))

Abstract

A U-statistic of order k with kernel \(f: \mathbb{X}^{k} \rightarrow \mathbb{R}^{d}\) over a Poisson process η is defined as

$$\displaystyle{\sum _{(x_{1},\ldots,x_{k})}f(x_{1},\ldots,x_{k}),}$$

where the summation is over k-tuples of distinct points of η, under appropriate integrability assumptions on f. U-statistics play an important role in stochastic geometry since many interesting functionals can be written as U-statistics, like intrinsic volumes of intersection processes, characteristics of random geometric graphs, volumes of random simplices, and many others. It turns out that the Wiener–Ito chaos expansion of a U-statistic is finite and thus Malliavin calculus is a particularly suitable method. Variance estimates, approximation of the covariance structure, and limit theorems which have been out of reach for many years can be derived. In this chapter we state the fundamental properties of U-statistics and investigate moment formulae. The main object of the chapter is to introduce the available limit theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Locally compact second countable Hausdorff space.

References

  1. Ané, C., Ledoux, M.: On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Relat. Fields 116, 573–602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bárány, I.: Sylvester’s question: the probability that n points are in convex position. Ann. Probab. 27, 2020–2034 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourguin, S., Peccati, G: Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering. Electron. J. Probab. 19 (66), 1–42 (2014)

    MathSciNet  Google Scholar 

  4. Bourguin, S., Peccati, G.: The Malliavin-Stein method on the Poisson space. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 185–228. Springer, Cham (2016)

    Google Scholar 

  5. Breton, J., Houdré, C., Privault, N.: Dimension free and infinite variance tail estimates on Poisson space. Acta Appl. Math. 95, 151–203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Jong, P.: A central limit theorem for generalized multilinear forms. J. Multivariate Anal. 34, 275–289 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Decreusefond, L., Ferraz, E., Randriam, H., Vergne, A.: Simplicial homology of random configurations. Adv. Appl. Probab. 46, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dynkin, E.B., Mandelbaum, A.: Symmetric statistics, Poisson point processes, and multiple Wiener integrals. Ann. Stat. 11 (3), 739–745 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eichelsbacher, P., Thäle, C.: New Berry-Essen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab. 19 (102), 1–25 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Fissler, T., Thäle, C.: A four moments theorem for gamma limits on a Poisson chaos. arXiv:1502.01568 (2015)

    Google Scholar 

  11. Heinrich, L., Schmidt, H., Schmidt, V.: Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16, 919–950 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Houdré, C., Privault, N.: Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli 8, 697–720 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Hug, D., Reitzner, M.: Introduction to stochastic geometry. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi and Springer Series, vol. 6, pp. 145–184. Springer/Bocconi University Press, Milan (2016)

    Google Scholar 

  14. Hug, D., Thäle, C., Weil, W.: Intersection and proximity for processes of flats. J. Math. Anal. Appl. 426, 1–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kahle, M.: Random geometric complexes. Discrete Comp. Geom. 45, 553–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kahle, M.: Topology of random simplicial complexes: a survey. In: Tillmann, U., Galatius, S., Sinha, D. (eds.) Algebraic Topology: Applications and New Directions. Contemporary Mathematics, vol. 620, pp. 201–221. American Mathematical Society, Providence (2014)

    Google Scholar 

  17. Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl. 15, 343–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 (32), 1–32 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, II: rescaled kernels, marked processes and geometric U-statistics. Stoch. Process. Appl. 123, 4186–4218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Last, G.: Stochastic analysis for Poisson processes. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 1–36. Springer, Milan (2016)

    Google Scholar 

  21. Last, G., Penrose, M., Schulte, M., Thäle, C.: Moments and central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46 (2), 348–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peccati, G., Solé, J.L., Taqqu, M.S., Utzet, F.: Stein’s method and normal approximation of Poisson functionals. Ann. Prob. 38, 443–478 (2010)

    Article  MATH  Google Scholar 

  23. Peccati, G., Thäle, C.: Gamma limits and U-statistics on the Poisson space. ALEA Lat. Am. J. Probab. Math. Stat. 10, 525–560 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (48), 1487–1527 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  26. Reitzner, M.: Poisson point processes: Large deviation inequalities for the convex distance. Electron. Commun. Probab. 18 (96), 1–7 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Reitzner, M., Schulte, M.: Central limit theorems for U-statistics of Poisson point processes. Ann. Probab. 41 (6), 3879–3909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reitzner, M., Schulte, M., Thäle, C.: Limit theory for the Gilbert graph. Preprint (2014). arXiv 1312.4861. http://arxiv.org/abs/1312.4861

  29. Reynaud-Bouret, P.: Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Relat. Fields 126, 103–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schulte, M.: A central limit theorem for the Poisson–Voronoi approximation. Adv. Appl. Math. 49, 285–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schulte, M.: Normal approximation of Poisson functionals in Kolmogorov distance. J. Theor. Prob. 29 (1), 96–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schulte, M., Thäle, C.: The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch. Process. Appl. 122, 4096–4120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vitale, R.: Covariances of symmetric statistics. J. Multivariate Anal. 41, 14–26 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reitzner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lachièze-Rey, R., Reitzner, M. (2016). U-Statistics in Stochastic Geometry. In: Peccati, G., Reitzner, M. (eds) Stochastic Analysis for Poisson Point Processes. Bocconi & Springer Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-05233-5_7

Download citation

Publish with us

Policies and ethics