Skip to main content

Evaluation of Software-Oriented Block Ciphers on Smartphones

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8352))

Included in the following conference series:

Abstract

The main purpose of block ciphers is to ensure data confidentiality, integrity and robustness against security attacks. Nevertheless, several ciphers also try to be efficient in encryption and decryption phases, have a small energy consumption and/or small memory footprint. These ciphers are usually optimized for certain software or hardware platforms. In this work, we analyze lightweight and classic block ciphers. Further, we implement an application which employs 20 current software-oriented block ciphers and benchmark them on a smartphone. The experimental results and the performance evaluation of ciphers are presented. Moreover, we compare the performance of two forms of implementation by native JAVA cryptography APIs and by an external cryptography provider. In addition, we measure the current consumption of the selected block ciphers on a smartphone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bouncycastle.org/specifications.html

  2. 2.

    http://rtyley.github.com/spongycastle/

References

  1. Rinne, S., Eisenbarth, T., Paar, C.: Performance analysis of contemporary light-weight block ciphers on 8-bit microcontrollers. In: ECRYPT Workshop SPEED-Software Performance Enhancement for Encryption and Decryption booklet, Citeseer, pp. 33–43 (2007)

    Google Scholar 

  2. Eisenbarth, T., Kumar, S.: A survey of lightweight-cryptography implementations. Des. Test Comput., IEEE 24(6), 522–533 (2007)

    Article  Google Scholar 

  3. Çakiroglu, M.: Software implementation and performance comparison of popular block ciphers on 8-bit low-cost microcontroller. Int. J. Phys. Sci. 5(9), 1338–1343 (2010)

    Google Scholar 

  4. Eisenbarth, T., et al.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

    Google Scholar 

  6. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green cryptography: a comparison of lightweight ciphers from the energy viewpoint. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407. Springer, Heidelberg (2012)

    Google Scholar 

  7. Weis, R., Lucks, S.: The performance of modern block ciphers in JAVA. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 125–133. Springer, Heidelberg (2000)

    Google Scholar 

  8. Paik, J.H., Seo, S.C., Kim, Y., Lee, H.J., Jung, H.C., Lee, D.H.: An efficient implementation of block cipher in android platform. In: 2011 5th FTRA International Conference on Multimedia and Ubiquitous Engineering (MUE), pp. 173–176. IEEE (2011)

    Google Scholar 

  9. Lewerentz, A., Lindvall, J., Fogelström, N.D.: Performance and energy optimization for the android platform (2012)

    Google Scholar 

  10. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kara, O., Manap, C.: A new class of weak keys for blowfish. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 167–180. Springer, Heidelberg (2007)

    Google Scholar 

  12. Lu, J., Wei, Y., Kim, J., Pasalic, E.: The higher-order meet-in-the-middle attack and its application to the camellia block cipher. In: Part at the First Asian Workshop on Symmetric Key Cryptography (ASK 2011), August 2011. https://sites.google.com/site/jiqiang.

  13. Moriai, S., Shimoyama, T., Kaneko, T.: Higher order differential attack of a CAST cipher. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 17–31. Springer, Heidelberg (1998)

    Google Scholar 

  14. Pestunov, A.: Differential cryptanalysis of 24-round cast-256. In: IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON 2008, pp. 46–49. IEEE (2008)

    Google Scholar 

  15. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 197–209. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Junod, P.: On the complexity of matsui’s attack. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)

    Google Scholar 

  17. Phan, R.-W.: Related-Key attacks on triple-DES and DESX variants. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 15–24. Springer, Heidelberg (2004)

    Google Scholar 

  18. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full GOST. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 9–28. Springer, Heidelberg (2012)

    Google Scholar 

  20. Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 365–374. Springer, Heidelberg (2012)

    Google Scholar 

  21. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-bicliques: cryptanalysis of full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-the-middle cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

    Google Scholar 

  24. Yu, X., Wu, W., Li, Y., Zhang, L.: Cryptanalysis of reduced-round KLEIN block cipher. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 237–250. Springer, Heidelberg (2012)

    Google Scholar 

  25. Park, J.: Security analysis of mcrypton proper to low-cost ubiquitous computing devices and applications. Int. J. Commun. Syst. 22(8), 959–969 (2009)

    Article  Google Scholar 

  26. Abdul-Latip, S.F., Reyhanitabar, M.R., Susilo, W., Seberry, J.: On the security of NOEKEON against side channel cube attacks. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 45–55. Springer, Heidelberg (2010)

    Google Scholar 

  27. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique cryptanalysis of the present and led lightweight ciphers. Technical report, Cryptology ePrint Archive, Report 2012/591 (2012)

    Google Scholar 

  28. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

    Google Scholar 

  29. Kaliski, B., Yin, Y.: On the security of the rc5 encryption algorithm. Technical report, RSA Laboratories Technical Report TR-602. To appear (1998)

    Google Scholar 

  30. Shimoyama, T., Takenaka, M., Koshiba, T.: Multiple linear cryptanalysis of a reduced round RC6. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, p. 76. Springer, Heidelberg (2002)

    Google Scholar 

  31. Galice, S., Minier, M.: Improving integral attacks against rijndael-256 Up to 9 rounds. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 1–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Sung, J.: Differential cryptanalysis of eight-round seed. Inf. Process. Lett. 111(10), 474–478 (2011)

    Article  MATH  Google Scholar 

  33. Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 61–74. Springer, Heidelberg (2011)

    Google Scholar 

  34. Chung-Wei Phan, R.: Cryptanalysis of full skipjack block cipher. Electron. Lett. 38(2), 69–71 (2002)

    Article  Google Scholar 

  35. Lucks, S.: The saturation attack - A bait for twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

    Google Scholar 

  36. Sasaki, Y., Wang, L., Sakai, Y., Sakiyama, K., Ohta, K.: Three-subset meet-in-the-middle attack on reduced XTEA. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 138–154. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, Heidelberg (2002)

    Book  Google Scholar 

  38. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (Blowfish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer, Heidelberg (1994)

    Google Scholar 

  39. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Specification of camellia-a 128-bit block cipher (2000)

    Google Scholar 

  40. Adams, C.: The cast-128 encryption algorithm (1997)

    Google Scholar 

  41. Gilchrist, J., Adams, C.: The cast-256 encryption algorithm (1999)

    Google Scholar 

  42. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

    Google Scholar 

  43. Smid, M., Branstad, D.: Data encryption standard: past and future. Proc. IEEE 76(5), 550–559 (1988)

    Article  Google Scholar 

  44. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)

    Google Scholar 

  45. Courtois, N.: Security evaluation of gost 28147–89 in view of international standardisation. Cryptologia 36(1), 2–13 (2012)

    Article  MathSciNet  Google Scholar 

  46. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

    Google Scholar 

  47. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)

    Google Scholar 

  48. Specification of the 3gpp confidentiality and integrity algorithms, document 2: Kasumi specification (release 10) (2011)

    Google Scholar 

  49. Cannire, C., Dunkelman, O., Kneevi, M.: Katan and ktantan a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

    Google Scholar 

  50. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)

    Google Scholar 

  51. Lim, C.H., Korkishko, T.: mCrypton - a lightweight block cipher for security of low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

    Google Scholar 

  52. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: Noekeon. In: First Open NESSIE Workshop (2000)

    Google Scholar 

  53. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: Present: an ultra-light weight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Google Scholar 

  54. Knudsen, L.R., Rijmen, V., Rivest, R.L., Robshaw, M.: On the design and security of RC2. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 206–221. Springer, Heidelberg (1998)

    Google Scholar 

  55. Rivest, R.: The rc5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 86–96. Springer, Heidelberg (1995)

    Google Scholar 

  56. Contini, S., Rivest, R., Robshaw, M., Yin, Y.: The security of the rc6 tm block cipher. v1. 0. http://www.rsa.com/rsalabs/aes/security.pdf (1998)

  57. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)

    Google Scholar 

  58. Lee, J., Park, J., Lee, S., Kim, J.: The seed encryption algorithm. SEED (2005)

    Google Scholar 

  59. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced encryption standard. NIST AES Proposal (1998)

    Google Scholar 

  60. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–13. Springer, Heidelberg (1999)

    Google Scholar 

  61. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  62. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish: a 128-bit block cipher. NIST AES Proposal 15 (1998)

    Google Scholar 

  63. Ko, Y., Hong, S.H., Lee, W.I., Lee, S.-J., Kang, J.-S.: Related key differential attacks on 27 rounds of XTEA and full-round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

    Google Scholar 

  64. Malina, L., Hajny, J.: Privacy-preserving framework for geosocial applications. Secur. Commun. Netw. 2013(8), 1–16 (2013)

    Google Scholar 

  65. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 587 (2013)

    Google Scholar 

Download references

Acknowledgments

This research work is funded by project SIX CZ.1.05/2.1.00/03.0072; the Technology Agency of the Czech Republic projects TA02011260 and TA03010818; the Ministry of Industry and Trade of the Czech Republic project FR-TI4/647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Malina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Malina, L., Clupek, V., Martinasek, Z., Hajny, J., Oguchi, K., Zeman, V. (2014). Evaluation of Software-Oriented Block Ciphers on Smartphones. In: Danger, J., Debbabi, M., Marion, JY., Garcia-Alfaro, J., Zincir Heywood, N. (eds) Foundations and Practice of Security. FPS 2013. Lecture Notes in Computer Science(), vol 8352. Springer, Cham. https://doi.org/10.1007/978-3-319-05302-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05302-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05301-1

  • Online ISBN: 978-3-319-05302-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics