Skip to main content

Asteraceae

  • Chapter
  • First Online:
Halophytes: An Integrative Anatomical Study

Abstract

This chapter describes the anatomical features of the Asteraceae and discusses ecological, functional, and evolutionary aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many Anglo-Saxon researchers dealing with plant physiology actually use the term hypodermal cells (layer) when referring to exodermis. The term hypodermis is rather confusing: it suggests only a topographic disposition of a plant tissue. In fact, anatomically speaking, the layer of cells with suberized cells beneath the epidermis represents the exodermis.

  2. 2.

    Root aerenchyma is quantified as gas volume per unit root volume, i.e., porosity (Colmer and Flowers 2008).

References

  • Abulfatih HA (2003) Ecological anatomy of xerophytic leaves from Qatar. J King Saud Univ Sci 16(1):19–29

    Google Scholar 

  • Albert R (1975) Salt regulation in halophytes. Oecologia (Berlin) 21:57–71

    Article  Google Scholar 

  • Anderson CE (1974) A review of structure in several North Carolina salt marsh plants. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic, New York, NY, pp 307–344

    Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332, Abstract

    Article  CAS  Google Scholar 

  • Atanasiu L (1984) Ecofiziologia plantelor. Bucureşti, Ed. Şt. şi Enciclop., pp 204–216

    Google Scholar 

  • Bonnett HT (1968) The root endodermis: fine structure and function. J Cell Biol 37:199–205

    Google Scholar 

  • Bucur N, Dobrescu C, Turcu GH, Lixandru GH, Teşu C (1960) Contribuţii la studiul halofiliei plantelor din păşuni şi fâneţe de sărătură din Depresiunea Jijia-Bahlui (partea a II-a). Stud şi Cerc (Biol şi Şt Agricole) Acad R.P.Române Filiala Iaşi 11(2):333–347

    Google Scholar 

  • Chermezon H (1910) Recherches anatomiques sur les plantes littorales. Ann Sci Nat sér 9 Bot 20:117–129, 270–274, 299–307

    Google Scholar 

  • Clarkson DT, ROBARDS AW (1975) The endodermis, its structural development and physiological role. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, London, pp 415–436

    Google Scholar 

  • Clarkson DT, Robards AW, Sanderson J, Peterson CA (1978) Permeability studies on epidermal-hypodermal sleeves isolated from roots of Allium cepa (onion). Can J Bot 56:1526–1532

    Article  CAS  Google Scholar 

  • Clarkson DT, Robards AW, Stephens JE, Stark M (1987) Suberin lamellae in the hypodermis of maize (Zea mays) roots: development and factors affecting the permeability of hypodermal layers. Plant Cell Environ 10:83–93

    Article  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radical oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    Article  CAS  PubMed  Google Scholar 

  • Cooper A (1982) The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol 90:263–275

    Article  CAS  Google Scholar 

  • Davidescu D, Calancea L, Davidescu V, Landru GH, Ţârdea C (1981) Agrochimie. Bucureşti, Edit. Did. şi Pedag.

    Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Harcourt Academic, Sandiego, CA

    Google Scholar 

  • Enstone DE, PETERSON CA (1997) Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis. Can J Bot 75:1188–1199

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Fahn A (1964) Some anatomical adaptations of desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • van Fleet DS (1961) Histochemistry and function of the endodermis. Bot Rev 27:165–220

    Article  Google Scholar 

  • Frey W, Kürschner H (1983) Photosyntheseweg und Zonierung von Halophyten an salzseen in der Turkei, in Jordanien und in Iran. Flora 173:293–310

    Google Scholar 

  • Gartwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889

    Article  Google Scholar 

  • Gartwaite AJ, Armstrong W, Colmer TD (2008) Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol 179:405–416

    Article  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47 (abstract)

    Google Scholar 

  • Ginzburg C (1966) Xerophytic structures in the roots of desert plants. Ann Bot 30(119):403–418

    Google Scholar 

  • Grigore MN (2008) Introducere în Halofitologie. Elemente de anatomie integrativă. Edit. Pim, Iaşi

    Google Scholar 

  • Grigore MN, Toma C (2006) Ecological anatomy elements related to Asteraceae halophytes species. Stud Com Muz Şt Nat “Ion Borcea” Bacău 21:94–98

    Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical investigations in some halophyte species of Moldavia. Proceedings of the 1st international conference environment—natural sciences- food industry in european context. Baia Mare, 16–17 November 2007, pp 239–244

    Google Scholar 

  • Grigore MN, Toma C (2008) Polymorphic histo-anatomical adaptations of halophytes under different natural stress factors. Physiol Plant 133:3 (abstract)

    Google Scholar 

  • Grigore M-N, Toma C, Boscaiu M (2011a) Ecological notes on halophytes species from Mediterranean climate. Lucr. Şt. (Horticultură), USAMV “Ion Ionescu de la Brad”, Iaşi 54(1):29–34

    Google Scholar 

  • Grigore MN, Boscaiu M, Vicente O (2011b) Ecological notes in Mediterranean halophytes. Towards an integrative approach. Ecological Questions 14:11–14

    Google Scholar 

  • Jennings DH (1976) The effect of sodium chloride on higher plants. Biol Rev 51:453–486

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Kozlowski TT (1997) Response of woody plants to flooding and salinity. The Physiology Monograph 1:1–29

    Google Scholar 

  • Kreeb K (1974) Pflanzen an Salzstandorten. Naturwissenschaften 61:337–343

    Article  CAS  Google Scholar 

  • Lyshede OB (1978) Studies on outer epidermal cell walls with microchannels in a xerophytic species. New Phytologist 80(2):421–426

    Article  Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Nagahashi G, Thomson WW, Leonard RT (1974) The Casparian strip as a barrier to the movement of lanthanum in corn roots. Science 183:670–671 (abstract)

    Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190:127–136

    Article  CAS  Google Scholar 

  • Poljakoff-Mayber A (1975) Morphological and anatomical changes in plants as a response to salinity stress. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Berlin, pp 97–117

    Chapter  Google Scholar 

  • du Pont FM, Leonard RT (1977) The use of lanthanum to study the functional development of the Casparian strip in corn roots. Protoplasma 91:315–323

    Article  Google Scholar 

  • Prodan I (1922) Oecologia plantelor halofile din România, comparate cu cele din Ungaria şi Şesul Tisei din regatul SHS. Bul Inf Grăd Bot şi Muz Bot din Cluj, II, 3:37–52, 69.84, 101–112

    Google Scholar 

  • Prodan I (1939) Flora pentru detrminarea şi descrierea plantelor ce cresc în România. II. (ediţia a II-a). Edit. Cartea Românească, Cluj-Napoca, pp 253–305

    Google Scholar 

  • Raţiu F, Nicolau M (1967) Contribuţii la cunoaşterea ecologiei unor halofite. Contrib Bot, Univ “Babeş-Bolyai” Cluj-Napoca, pp 315–321

    Google Scholar 

  • Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574

    Article  CAS  Google Scholar 

  • Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. J Medit Ecol 4(3–4):23–35

    Google Scholar 

  • Sanderson J (1983) Water uptake by different regions of the barley root: pathways of radial in relation to development of the endodermis. J Exp Bot 34:240–253

    Article  Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50(337):1267–1280

    CAS  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Rochus F, Votrubova O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  PubMed  Google Scholar 

  • Steiner M (1934) Zur Okologie der Salzmarschen der nordöstlichen Vereinigten Staaten von Nord-amerika. Jb Wiss Bet 81:94–202

    Google Scholar 

  • Steward FC, Sutcliffe JF (1959) Plants in relation to inorganic salts. In: Steward FC (ed) Plant Physiology, vol 2. Academic, New York, NY, pp 253–478

    Google Scholar 

  • Stocker O (1933) Salzpflanzen. Handb. Naturwiss 8:699–712

    Google Scholar 

  • Şennikov AP (1950) Ecologhia rastenij. Izdat Sovetskaia Nauka, Moskva

    Google Scholar 

  • Şerbănescu I (1965) Asociaţiile halofite din Câmpia Română. Com. Geol., Instit. Geol. St. Tehn. Econ., seria C, Pedologie, nr. 15, Bucureşti, pp 1–148

    Google Scholar 

  • Ţopa E (1954) Vegetaţia terenurilor sărate din R. P. Română. Natura 6(1):57–76

    Google Scholar 

  • Van Andel OM (1953) The influence of salts on the exudation of tomato plants. Bot Neerl 2:445–521

    Article  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academi, New York, NY

    Google Scholar 

  • Weigl J, Lüttge U (1962) Microautoradiographische Untersuchungen über die Aufnahme von 35SO4 - durch Wurzeln von Zea mays L. Die Funktion der primären Endodermis. Planta 59:15–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grigore, MN., Ivanescu, L., Toma, C. (2014). Asteraceae. In: Halophytes: An Integrative Anatomical Study. Springer, Cham. https://doi.org/10.1007/978-3-319-05729-3_18

Download citation

Publish with us

Policies and ethics