Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1051 Accesses

Abstract

The Hubbard model was originally developed to describe electrons in narrow conduction bands [17]. Its bosonic version, the Bose-Hubbard model [8], yields a very good description of ultracold bosonic atoms trapped in deep optical lattices, as first noted in Ref. [19]. The model shows a phase transition at zero temperature from a superfluid to a Mott-insulating phase, which forms one of the paradigm examples of a quantum phase transition [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altland A, Simons B (2006) Condensed matter field theory. Cambridge University Press, Cambridge. ISBN 0521845084

    Google Scholar 

  2. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders, Philadelphia. ISBN 0030839939

    Google Scholar 

  3. Bakr WS, Peng A, Tai ME, Ma R, Simon J, Gillen JI, Fölling S, Pollet L, Greiner M (2010) Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329:547–550

    Article  ADS  Google Scholar 

  4. Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964

    Article  ADS  Google Scholar 

  5. Capogrosso-Sansone B, Prokof’ev N, Svistunov B (2007) Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model. Phys Rev B 75:134302

    Article  ADS  Google Scholar 

  6. Capogrosso-Sansone B, Söyler S, Prokof’ev N, Svistunov B (2008) Monte Carlo study of the two-dimensional Bose-Hubbard model. Phys Rev A 77:015602

    Article  ADS  Google Scholar 

  7. Dalibard J (1999) Collisional dynamics of ultra-cold atomic gases. In: Proceedings of the International School of Physics-Enrico Fermi, vol 321

    Google Scholar 

  8. Fisher MPA, Weichman PB, Grinstein G, Fisher DS (1989) Boson localization and the superfluid-insulator transition. Phys Rev B 40:546–570

    Article  ADS  Google Scholar 

  9. Fölling S (2008) Probing strongly correlated states of ultracold atoms in optical lattices. PhD thesis, Johannes-Gutenberg-Universität Mainz, Mainz

    Google Scholar 

  10. Gerbier F (2007) Boson Mott insulators at finite temperatures. Phys Rev Lett 99:120405

    Article  ADS  Google Scholar 

  11. Gerry C, Knight P (2004) Introductory quantum optics. Cambridge University Press, Cambridge. ISBN 052152735X

    Google Scholar 

  12. Glauber R (1963) Coherent and incoherent states of the radiation field. Phys Rev 131:2766–2788

    Article  ADS  MathSciNet  Google Scholar 

  13. Greiner M (2003) Ultracold quantum gases in three-dimensional optical lattice potentials. PhD thesis, Ludwig-Maximilians-Universität München, München

    Google Scholar 

  14. Greiner M, Mandel O, Esslinger T, Hänsch TW, Bloch I (2002) Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415:39–44

    Article  ADS  Google Scholar 

  15. Grimm R, Weidemüller M, Ovchinnikov YB (2000) Optical dipole traps for neutral atoms. Adv Atom Mol Opt Phys 42:95–170

    Article  ADS  Google Scholar 

  16. Haas M, Jentschura UD, Keitel CH (2006) Comparison of classical and second quantized description of the dynamic stark shift. Am J Phys 74:77

    Article  ADS  Google Scholar 

  17. Hubbard J (1963) Electron correlations in narrow energy bands. Proc R Soc A 276:238–257

    Article  ADS  Google Scholar 

  18. Huber SD, Altman E, Buchler HP, Blatter G (2007) Dynamical properties of ultracold bosons in an optical lattice. Phys Rev B 75:85106

    Article  ADS  Google Scholar 

  19. Jaksch D, Bruder C, Cirac JI, Gardiner C, Zoller P (1998) Cold bosonic atoms in optical lattices. Phys Rev Lett 81:3108–3111

    Article  ADS  Google Scholar 

  20. Kashurnikov V, Svistunov B (1996) Exact diagonalization plus renormalization-group theory: accurate method for a one-dimensional superfluid-insulator-transition study. Phys Rev B 53:11776–11778

    Article  ADS  Google Scholar 

  21. Kohn W (1959) Analytic properties of bloch waves and wannier functions. Phys Rev 115:809–821

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kühner TD, White SR, Monien H (2000) One-dimensional Bose-Hubbard model with nearest-neighbor interaction. Phys Rev B 61:12474–12489

    Article  ADS  Google Scholar 

  23. Leggett A (2006) Quantum liquids: Bose condensation and cooper pairing in condensed-matter systems. Oxford University Press, USA

    Book  Google Scholar 

  24. Menotti C, Trivedi N (2008) Spectral weight redistribution in strongly correlated bosons in optical lattices. Phys Rev B 77:235120

    Article  ADS  Google Scholar 

  25. I. A. S. Milton Abramowitz (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York. ISBN 0486612724

    Google Scholar 

  26. Pethick CJ, Smith H (2001) Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Sachdev S (2011) Quantum phase transitions. Cambridge University Press, Cambridge, 2nd edn. ISBN 0521514681

    Google Scholar 

  28. Sherson JF, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S (2010) Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467:68–72

    Article  ADS  Google Scholar 

  29. Trotzky S, Pollet L, Gerbier F, Schnorrberger U, Bloch I, Prokofev NV, Svistunov B, Troyer M (2010) Suppression of the critical temperature for superfluidity near the Mott transition. Nat Phys 6:998–1004

    Article  Google Scholar 

  30. Van Kempen EGM, Kokkelmans SJJMF, Heinzen DJ, Verhaar BJ (2002) Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys Rev Lett 88:093201

    Google Scholar 

  31. van Oosten D (2004) Quantum gases in optical lattices: the atomic Mott insulator. PhD thesis, Universiteit Utrecht, Utrecht

    Google Scholar 

  32. Wannier G (1937) The structure of electronic excitation levels in insulating crystals. Phys Rev 52:191–197

    Article  ADS  Google Scholar 

  33. Wessel S, Alet F, Troyer M, Batrouni G (2004) Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices. Phys Rev A 70:053615

    Article  ADS  Google Scholar 

  34. Will S (2011) Interacting bosons and fermions in three-dimensional optical lattice potentials. PhD thesis, Johannes Gutenberg-Universität Mainz, Mainz

    Google Scholar 

  35. Zwerger W (2003) Mott-Hubbard transition of cold atoms in optical lattices. J Opt B Quantum Semiclass 5:9–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Endres .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Endres, M. (2014). Superfluid-Mott-Insulator Transition. In: Probing Correlated Quantum Many-Body Systems at the Single-Particle Level. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05753-8_2

Download citation

Publish with us

Policies and ethics