Skip to main content

Ecosystem Services of Multispecific and Multistratified Cropping Systems

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 14

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 14))

Abstract

New cropping alternatives are explored in response to the drawbacks of the Green Revolution. Alternative practices use the ecological regulations of agroecosystems, and strengthen and manage agricultural biodiversity. Multi-species cropping systems are good models to seek innovative solutions. Indeed the combination of crops, ranging from simplest forms to complex multi-stage associations, such as agroforests, have allowed many populations to maintain their production conditions, while at the same time overcoming severe shocks such as droughts, epidemics or changes in market prices. An empirical agroecology has thus been created mainly using traditional knowledge. We present the following benefits provided by the ecosystem services of mixed cropping: (1) yields are often higher than in monocultures, (2) the amount of mineral and organic fertilizers is decreased two times, (3) mixed cropping is an effective alternative to pesticides, (4) water and energy is saved, (5) soil quality is preserved, and (6) worktime is better managed. A true agroecological engineering approach, linking scientific and empirical knowledge can thus be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adu-Gyamfi JJ, Myaka FA, Sakala WD, Odgaard R, Vesterager JM, Hogh-Jensen H (2007) Biological nitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops of maize-pigeonpea in semi-arid Southern and Eastern Africa. Plant Soil 295:127–136

    CAS  Google Scholar 

  • Aerts R (1999) Interspecies competition in natural plant communities: mechanism, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    CAS  Google Scholar 

  • Afessa T (1997) Management of two major diseases of maize in Ethiopia. Afr Crop Sci Conf Proc 3:910–920

    Google Scholar 

  • AGRISUD (2010) L’agro écologie en pratiques -20 ans d’apprentissage en Angola – Brésil – Cambodge Gabon – Inde – Laos – Madagascar. GUIDE édition 2010

    Google Scholar 

  • Ahmed S, Rao MR (1982) Performance of maize-soybean intercrop combination in the tropics: results of a multilocation study. Field Crop Res 5:147–161

    Google Scholar 

  • Ahmed S, Alam MJ, Ma MS, Zaman S (2007) Etude sur le Mungo bean. Exploitation de poly-cultures avec Sésame à différent taux de semis. Int J Sustain J Sust Crop Prod 2(5):74–77

    Google Scholar 

  • Allen SC, Nair PKR, Brecke BJ, Nkedi-Kizza P, Ramsey CL (2004) Safety-net role of tree roots: evidence from a pecan (Carya illinoensis K. Koch) – cotton (Gossypium hirsutum) alley cropping system in the southern United States. For Ecol Manage 192:395–407

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agr Ecosyst Environ 74:19–31

    Google Scholar 

  • Altieri MA, Francis CA, van Schoonhoven A, Doll JD (1978) A review of insect prevalence in maize (Zea maize L.) and bean (Phaseolus vulgaris) polycultural systems. Field Crop Res 1:33–49

    Google Scholar 

  • Anil L, Park J, Phipps RH, Miller FA (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci 53:301–317

    Google Scholar 

  • Arslan A, Kurdali E (1996) Rainfed vetch-barley mixed cropping in the Syrian semi-arid conditions. II. Water use efficiency and root distribution. Plant Soil 183:149–160

    CAS  Google Scholar 

  • Atiama-Nurbel T, Deguine JP, Quilici S (2012) Maize more attractive than Napier grass as non-host plants for Bactrocera cucurbitae and Dacus demmerezi. Arthropod-Plant Interact. doi:10.1007/s11829-012-9185-4

    Google Scholar 

  • Augusseau X, Nikiéma P, Torquebiau E (2006) Tree biodiversity, land dynamics and farmers strategies on the agricultural frontier of south western Burkina Faso. Biodivers Conserv 15:613–630

    Google Scholar 

  • Aussanac G, Boulangeat C (1980) Interception of precipitations and actual evapo transpiration in planting of leafy and coniferous trees. Ann Sci Forest 37:91–107

    Google Scholar 

  • Autfray P (1985) Cultures associées et systèmes de culture en pays bamiléké (Ouest Cameroun). Centre Universitaire de Dschang-CNEARC, mémoire 1ère année ESAT. 82 p + annexe

    Google Scholar 

  • Autfray P (2005) Effets de litières sur l’offre en azote d’origine organique dans des systèmes de culture de maïs à couvertures végétales Etude de cas dans la zone à forêt semi-décidue de Ivory Coast. Thèse de Doctorat en Sciences du Sol. Ecole Nationale Supérieure Agronomique de Montpellier, France

    Google Scholar 

  • Ayieni AO, Duke WB, Akobandu IO (1984) Weed interference in maize cowpea and maize/cowpea intercrop in a sub-humid tropical environment. I. Influence of cropping season. II. Early growth and nutrient content. III. Influence of land preparation. Weed Res 24:269–279

    Google Scholar 

  • Ayuk-Takem JA, Cheda HR (1985) Grain yield potential of some diverse maize (Zea maize L.) morphotypes intercropped with cocoyam (Xanthosoma sagittifolium). Exp Agr 21:145–152

    Google Scholar 

  • Azam-Ali SN, Gregory PJ, Monteith JL (1984) Effects of plant population on water use and productivity of pearl millet (Pennisetum typhoides) grown on stored water. I. Growth of roots and shoots. Exp Agr 20:203–214

    Google Scholar 

  • Baker EFI, Norman EW (1975) Cropping system in northern Nigeria. In: Proceedings of the cropping system workshop, IRRI, Los Branos, 18–20 Mar 1975, pp 334–361

    Google Scholar 

  • Balde AB (2011) Analyse intégrée du partage des ressources (eau, azote et rayonnement) et des performances dans les systèmes de culture en relais sous semis direct en zone Tropicales subhumides. Thèse. Centre International d’Etudes Supérieures en Sciences Agronomiques, Montpellier, 160 p

    Google Scholar 

  • Baldy C (1963) Cultures associées et productivité de l’eau. Ann Agro 14(4):484–534

    Google Scholar 

  • Baldy C (1986) Agrométéorologie et développement des régimes arides et semi arides. INRA, 115 p

    Google Scholar 

  • Baldy C, Durand R (1970) Evapotranspirations potentielles calculées et humidités relatives sous forêt et en clairière a Zernizea (Tunisie) Ann. INRF-Tunisie, 4, 17 p

    Google Scholar 

  • Baldy C, Stigter CJ (1997) Agrometeorology of multiple cropping in warm climate. Translation of Agrométéorologie des cultures multiples en région chaudes. INRA, Paris, 1993. INRA, Paris, p 236

    Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron 24:325–332

    Google Scholar 

  • Barhom TIH (2001) Studies on water requirements for some crops under different cropping systems. M.Sc. thesis, Facility of Agriculture Cairo University

    Google Scholar 

  • Barral JA, Sagnier H (1889) Dictionnaire d’Agriculture: Encyclopédie agricole complète. Librairie Hachette & Cie.70 Bd St Germain, 4 vols, 3900 p

    Google Scholar 

  • Barthès B, Roose E (1983) Aggregate stability as an indicator for soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149

    Google Scholar 

  • Battesti (1997) Les oasis du Jérid :des révolutions permanentes ?Projet “Recherche pour le développement de l’agriculture d’oasis”. INRAT/Centre de Recherches Phoenicicoles Degache –Tunisie. GRIDAO/CIRAD – SAR, Montpellier. Financement Ministère de l’Agriculture Tunisien et Ministère des Affaires Etrangères Français

    Google Scholar 

  • Baudron F (2011) Agricultural intensification – saving space for wildlife? Wageningen University, IX. Thesis Ph.D., University of Wageningen, 244 p

    Google Scholar 

  • Baumann DT, Kropff MJ, Bastiaans L (2000) Intercropping leeks to suppress weeds. Weed Res 40:359–374

    Google Scholar 

  • Beauval V (1991) Association de cultures comprenant des cultures annuelles et des palmiers vignobles dans le MONO (sud-ouest du Bénin): Etude coton AFD – MDR, 20 p

    Google Scholar 

  • Bernardès M, De Pury P, Eltz F, Vedy J-C (1999) Bilan comparé de pratiques culturales (Maïs, engrais vert sur semis direct) dans la lutte contre l’érosion hydrique au Brésil. Bull. EROSION No 19, IRD BP 5045, 34032 Montpellier Cedex 1, pp 353–363

    Google Scholar 

  • Berry SD, Dana P, Spaull VW, Cadet P (2009) Effect of intercropping on nematodes in two small-scale sugarcane farming systems in South Africa. Nematropica 39:11–33

    Google Scholar 

  • Betencourt E, Colomb B, Cordier F, Guilleré C, Juste E, Souche G, Hinsinger P (2010) Soil phosphorus pool differ when durum wheat is grown alone or intercropped with pea or fababean in low versus high-input conditions. AGRO2010. XIth Congress, Montpellier, 29 Aug–3 Sept 2010, pp 169–170

    Google Scholar 

  • Bilalis D, Papastylianou P, Konstantas A, Patsiali S, Karkanis A, Efthimiadou A (2010) Weed-suppressive effects of maize-legume intercropping in organic farming. Int J Pest Manag 56:173–181

    Google Scholar 

  • Bizimana R, Duchauffour PH (1997) Projet de recherche pour la protection de l’Environnement. Institut des Sciences Agronomiques du Burundi. BP 795. Bujumbura, pp 166–168

    Google Scholar 

  • Bogale T, Debele T, Gebeyehu S, Tana T, Getela N, Workayehu T (2001) Development of appropriate cropping systems for various maize producing regions of Ethiopia. Second international maize workshop of Ethiopia, 12–16 Nov 2001, pp 59–70

    Google Scholar 

  • Boli B (1996) Fonctionnement des sols sableux et optimisation des pratiques culturales en zone soudanienne humide du Nord-Cameroun (Expérimentation au champ en parcelles d’érosion à Mbissiri). Thèse de Dr. Etat, Université de Bourgogne, France, 344 p

    Google Scholar 

  • Bouzinac S, Taillebois J, Séguy L (2009) La SAGA SEBOTA – Les riz poly-aptitudes (SBT) créés pour et dans les DMC au service de rizicultures alternatives performantes diversifiées “propres” et à faible coût. Chapitres I, II, III. In: Le Réseau du Semis Direct sur Couverture Végétale Permanente (SCV). Doc CIRAD (site agroécologie), Bp 5045, 34032 Montpellier, France

    Google Scholar 

  • Brahic E, Terreaux J-P (2009) Evaluation économique de La biodiversité. Méthodes et exemples pour les forêts tempérées. Quae éditions. Savoir Faire, 196 p

    Google Scholar 

  • Brokensha D, Warren DM, Werner O (1980) Indigenous knowledge systems and development. University Press of America, Lantham, 460 p

    Google Scholar 

  • Brown JE, Splittstoesser WE, Gerber JM (1985) Production and economic returns of vegetable intercropping systems. J Am Soc Hort Sci 110(3):350–353

    Google Scholar 

  • Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010) Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Sci Direct 2:34–42

    Google Scholar 

  • Bulson HAJ, Snaydon RW, Stopes CE (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agr Sci 128:59–71

    Google Scholar 

  • Caballero A, Goicoechea Oicoechea RE, Ernaiz PJ (1995) Forage yields and quality of common vetch and at sown at varying graining ratios and graining rates of vetch. Field Crop Res 41:135–140

    Google Scholar 

  • Caldwell RM (1995) Simulation model for intercropping systems. In: Sinoquet H, Cruz P (eds) Ecophysiology of tropical Intercropping. INRA, Versailles, pp 353–368

    Google Scholar 

  • Caldwell MM, Richards JH (1986) Competing root systems: morphology and models of absorption. In: Givnish T (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, England, pp 251–260

    Google Scholar 

  • Camara A (2007) Dynamiques régionales et systèmes ruraux en Guinée Forestière. Vers la conception d’un observatoire pour le développement. Ph.D. thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, France, 250 p

    Google Scholar 

  • Camara AA, Dugué P, Cheylan JP, Kalms JM (2009) De la forêt naturelle aux agroforêts en Guinée forestière. “From natural forests to agroforests in the Guinea forest region”. Cahiers Agric 18(5):425–431

    Google Scholar 

  • Camara A, Dugué P, Kalms J-M, Soulard CT (2010) Systèmes de culture, habitudes alimentaires et durabilité des agro-systèmes forestiers en Afrique (Guinée, Cameroun): une approche géo-agronomique. ISDA 2010, 28–30 juin 2010, 12 p

    Google Scholar 

  • Cannavo P, Sansoulet J, Harmand JM, Siles Gutierrez P, Dreyer E, Vaast P (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agr Ecosyst Environ 140(1–2):1–13

    Google Scholar 

  • Casenave A, Valentin C (1989) Les états de surface de la zone sahélienne. Influence sur l’infiltration. Editions de l’ORSTOM (Institut français de Recherche Scientifique pour le Développement en Coopération). Collection Didactique.70, rue d’Aulnay 93143 Bondy, France, 229p

    Google Scholar 

  • Chabanne A, Husson O, Tuan AD, Lhienard P (2009) Technical set- soil smouldering for a low cost restoration of fertility. Site sur le réseau du CIRAD, Agroécologie, 20 p

    Google Scholar 

  • Charreau C (1972) Problèmes posés par l’utilisation agricole des sols tropicaux par des cultures annuelles. Agron Trop XXVII(9):905–929

    Google Scholar 

  • Charreau C (1974) Soils of tropical dry and dry-wet climatic areas of West Africa and their use and management. A series of lectures. Agronomy Mimeo 74–26. Cornell University, Department of Agronomy, Ithaca, USA, 434 p

    Google Scholar 

  • Charreau C, Vidal P (1965) Influence de l’Alcacia Albida del. sur le sol. Nutrition minérale et rendements des mils pennisetum au Sénégal. Agronomie Tropicale (4):600–636

    Google Scholar 

  • Chen C, Westcott M, Neill K, Wichman D, Knox M (2004) Row configuration and nitrogen application for barleypea intercropping in Montana. Agron J 96:1730–1738

    Google Scholar 

  • Chervonyl AY (1999) Rapport d’étape sur la technologie des BRF, utilisant le seigle comme référence pour les années 1997–98. No 107. Université de Laval. Département des Sciences des Bois et de la Forêt. Québec GIK 7P4 Québec, 61 p

    Google Scholar 

  • Chikte P, Thakare SM, Bhalkare SK (2008) Influence of various cotton-based intercropping systems on population dynamics of thrips, Scirtothrips dorsalis Hood and whitefly, Bemisia tabaci Genn. Res Crop 9:683–687

    Google Scholar 

  • CIRAD-AFD-FFEM-JLFIDA (2005) Ministère affaires étrangères- FAO. 2005 Regards sur l’agriculture de conservation en Afrique de l’ouest et du centre et ses perspectives. (Synthèse). 3ème congrès agri conservation, 3–7 Octobre 2005, Nairobi, 101 p

    Google Scholar 

  • Clark EA, Francis CA (1985) Bean maize intercrops: a comparison of bush and climbing bean growth habits. Fields Crop Res 11:151–156

    Google Scholar 

  • Cochet H (2001) Crises et révolutions agricoles au Burundi. INAPG, Karthala, Paris, 125 p

    Google Scholar 

  • Cornet D (2005) Systèmes de cultures associées a base d’igname et gestion des plantes adventices. Année académique 2004–2005, Faculté des Sciences Agronomiques de Gembloux, 30 p

    Google Scholar 

  • Corre-Hellou G, Brisson N, Launay M, Fustec J, Crozat Y (2007) Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crop Res 103:76–85

    Google Scholar 

  • Costanza R (1991) Ecological economics: the science and management of sustainability. N-Y Colombia University Press, New York, USA

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R, Paruelo J, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260, 15 May 1997

    CAS  Google Scholar 

  • Dala RC (1974) Effects of intercropping maize with pigeon peas on grain yield and nutrient uptake. Exp Agric 10:219–224

    Google Scholar 

  • Dancette C (1984) Principaux résultats obtenus en 1983 par la division de bioclimatologie sur les systèmes de cultures à base de mil et de Niébé. Collection: Etudes techniques du CNRA. CNRA, BP 53 Bambey

    Google Scholar 

  • Dancette C, Poulain JF (1968) Influence de l’Acacia albida sur les facteurs pédo-climatiques et les rendements des cultures. IRAT/CNRA Nouvelle contribution. Institut de recherches agronomiques tropicales et des cultures vivrières. Centre national de recherches agronomiques, Paris

    Google Scholar 

  • Das PK (1999) Coconut-based cropping systems in India and Sri Lanka. In: Ohler JG (ed) Modern coconut management. Palm cultivation and products. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 277–287

    Google Scholar 

  • Debar JC (2013) Journée mondiale de l’alimentation: un besoin de clarification. Fondation FARM. Blog de la Fondation pour l’agriculture et la ruralité dans le monde: www.fondation-farm.org, 4 p

  • Deen W, Cousens R, Warringa J, Bastiaans L, Carberry P, Rebel K, Riha S, Murphy C, Benjamin LR, Cloughley C (2003) An evaluation of four crops: weed competition models using a common data set. Weed Res 43:116–129

    Google Scholar 

  • Deguine JP, Atiama-Nurbel T, Douraguia E, Chiroleu F, Quilici S (2012) Species diversity within a community of the Cucurbit fruit flies Bactrocera cucurbitae, Dacus ciliatus and Dacus demmerezi roosting in corn borders near cucurbit production areas of Reunion Island, Cirad, BP 5045,34032 Montpellier, France, 12p

    Google Scholar 

  • Denevan WM (1980) World systems of traditional resource management. Winston & Son/Edward Amold, London, pp 217–244

    Google Scholar 

  • Denevan WM (1995) Prehistoric agricultural methods as models for sustainability. Adv Plant Pathol 11:21–43

    Google Scholar 

  • Depommier D (1996) Structure, dynamique et fonctionnement des parcs à Faiherbia albida (Del.) A. Chev. Caractérisation et incidence des facteurs biophysiques et anthropiques sur l’aménagement et le devenir des parcs de Dossi et Watinoma, Burkina Faso. Thèse. Université de Paris VI, Paris, vol 1, 541 p

    Google Scholar 

  • Derelle D (2012) Effets des associations de plantes sur la symbiose mychorizienne et réponse spécifique des plantesà la mychorization. Alliances au pays des racines. 14ème Colloque scientifique et journées à thème. Société Nationale d’Horticulture de France. 25 mai 2012. Paris, pp 17–19

    Google Scholar 

  • Derelle D, Declerck S, Genet P, Dajoz I, van Aarte IM (2010) La coexistence entre espèces végétales influe sur la colonisation racinaire d’une espèce cible par un champignon mycorhyzien. Colloque Ecologie 2010. Premier colloque National d’Ecologie Scientifique 2–4 septembre 2010

    Google Scholar 

  • Diagne M (1985) Situation agro-pluviométrique au Sénégal à la mi-octobre 1986. Dot. Ronéo – ISRA, CNRA

    Google Scholar 

  • Diagne M (1987) Agro-climatologie du niébé. Synthèse de résultats de 1980. Dot. Ronéo – ISRA-ICNRA, 5 p

    Google Scholar 

  • Diouf J (2004) Ethique et intensification durable. Collection FAO: Questions d’éthique. FAO: Organisation Des Nations Unies Pour L’alimentation Et L’agriculture, Rome, 46 p

    Google Scholar 

  • Djangar S, Fofana A, Diagne M, Yamoha CF, Dick RP (2004) Pearl millet-based intercropping systems in semiarid areas of Senegal. Afr Crop Sci J 12(2):13–139, Printed in Uganda

    Google Scholar 

  • Dodelin B, Valet S (2007) Du bois Raméal fragmenté ?. Les rémanents en Foresterie et agriculture. Réseau Ecologique Refora. Forestier Rhône-Alpes, France. Colloque BRF de Lyon, France, 1–2 février 2007, 13p

    Google Scholar 

  • Donald CM (1958) The interaction of competition for light and for nutrients. Aust J Agr Res 9:421–435

    Google Scholar 

  • Doré T, Le Bail M, Martin P, Ney B, Roger-Estrade J (2006) L’agronomie aujourd’hui. Editions Quae, 365 p

    Google Scholar 

  • Duchaufour PH (1997) Abrégé de Pédologie. Masson Edit, 361 p

    Google Scholar 

  • Duchaufour H, Guizol PH, Bizimana M (1996) Avantage et inconvénients comparatifs de la haie mixte Calliandra/Setaria et du mulch comme dispositif anti-érosif en milieu rural burundais. Bull EROSION No 16, IRD BP 5045, 34032 Montpellier Cedex 1, pp 132–151

    Google Scholar 

  • Ducret G, Grangeret J (1986) Quelques aspects des systèmes de culture en pays bamiléké (Dschang, Cameroun). CUDS, 33 p. CIRAD. BP 5035, 34032 Montpellier 16–19 Déc, pp 115–127

    Google Scholar 

  • Dugué P (1998) Gestion de la fertilité et stratégies paysannes. Le cas des zones de savanes d’Afrique de l’Ouest et du Centre. Agriculture et Développement- Spécial sols tropicaux, 18:13–20

    Google Scholar 

  • Dugué P, Mathieu B, Sibelet N, Seugé C, Vall E, Cathala M, Olina JP (2006) Smallholders are innovating, what about agronomists? Case study: cropping systems in a cotton production area in Cameroon. In: Jacques C (ed) Agronomes et innovations: 3ème édition des entretiens du Pradel. Actes du colloque des 8–10 septembre 2004. L’Harmattan, Paris, pp 103–122. Les Entretiens du Pradel, Journées Olivier de Serres. 3, 2004-09-08/2004-09-10, Mirabel

    Google Scholar 

  • Dumont R (1975) La croissance de la famine. Une agriculture repensée. Seuil. Tecno-critique. 191 p

    Google Scholar 

  • Dupraz C, Liagre F (2008) Agroforesterie– des arbres et des cultures. Editions France Agricole, Paris, 413 p

    Google Scholar 

  • Dupraz C, Lecomte I, Mayus M, Mulia R, Vincent G, Jackson N, Van Noordwijk M (2004) Integrating tree-crop dynamics interactions in the Hi-sAFe model. In: Working together for sustainable land-use systems, 1st world congress of agroforestry, Orlando, 27 Jun–2 Jul 2004, p 177

    Google Scholar 

  • Dupriez H (1980a) Cultures associées ou monocultures? Validité du savoir paysan. Cahier d’Etude du milieu et d’Aménagement du territoire. Environnement africain et Développement du Tiers-monde (ENDA). BP 3370 Dakar. Sénégal, 24 p

    Google Scholar 

  • Dupriez H (1980b) Paysans d’Afrique noire. Terre et Vie. Bruxelles, 256 p

    Google Scholar 

  • Dupriez H (2006) Agriculture tropicale et exploitations familiales d’Afrique. Terre & Vie. Belgique. CTA. Coopération belge.Diobass, Ecologie et Société, 480 p

    Google Scholar 

  • Dupriez H, de Leener PH (2003) Arbres et agricultures multiétagées d’Afrique. CTA, Terres et Vie. L’Harmattan, 7, rue de l’école Polytechnique, 75005, Paris, 280 p

    Google Scholar 

  • Dury S, Zoa JM (2001) Modélisation économique des associations de cultures pérennes. Test du modèle de portefeuille sur des données réelles (systèmes cacao-palmiers-agrumes) au Cameroun. Communication à la journée “Diversification fruitière”. Réunion annuelle 2001 Centre de coopération internationale en recherche agronomique pour le développement-Productions fruitières et horticoles (Cirad-Flhor). Montpellier, 7 p

    Google Scholar 

  • Eden MJ (1980) A traditional agrosystem in the Amazon region of Columbia. Trop Ecol Dev, pp 509–514

    Google Scholar 

  • Egger K (1986) L’intensification écologique. Conservation (LAE) et amélioration des sols tropicaux par les systèmes agro-sylvo-pastoraux, pp 129–135. Docu Syst Agraires no 6: Aménagements hydro-agricoles et systèmes de production. Actes du IIIème Séminaire. Tome I

    Google Scholar 

  • Egunjobi OA (1984) Effects of intercropping maize with grain legumes and fertilizer treatments on populations of Protylenchus penetrans Godfrey (Nematoda) and on the yield of maize (Zea mays L.). Prot Ecol 6:153–167

    Google Scholar 

  • Ellis F (1998) Household strategies and rural livelihood diversification. J Dev Stud 35:1–38

    Google Scholar 

  • El-Swaify SA, Lo AKF, Joy R, Shinshiro L, Yost RS (1988) Achieving conservation effectiveness in the tropics using legume-intercrops. Soil Technol 1:1–12

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    CAS  PubMed  Google Scholar 

  • Epidi TT, Bassey AE, Zuofa K (2008) Influence of intercrops on pests’ populations in upland rice (Oryza sativa L.). Afr J Environ Sci Technol 2:438–441

    Google Scholar 

  • FAO (2010) L’état de l’insécurité alimentaire dans le monde. FAO, Différents rapports annuels. Organisation des Nations Unies pour l’alimentation et l’agriculture

    Google Scholar 

  • FAO (2011) Promotion des Intrants Agricoles par les organisations de producteurs au Niger. Le Projet “Intrants” de la FAO. GCP/NER/041/BEL. Organisation des Nations Unies pour l’alimentation et l’agriculture

    Google Scholar 

  • Fernandez-Aparicio M, Sillero JC, Rubiales D (2007) Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot 26:1166–1172

    Google Scholar 

  • Fleck NG, Machado CMN, de Souza RS (1984) Efficiencia da consorciao de culturas no controle de plantas danhinas. (Port.). Presq. Agrip. Brazil 19(5):591–598

    Google Scholar 

  • Fortmann L, Rocheleau D (1985) Women and agroforestry: four myths and tree case studies. Agroforest Syst 2:253–272

    Google Scholar 

  • Fotsing JM (1993) Erosion des terres cultivées et propositions de gestion conservatoire des sols en pays bamiléké (ouest-Cameroun). Cahiers ORSTOM Série pédol XXVIII(13):351–366

    Google Scholar 

  • Francis CA (1986) Distribution and importance of multiple cropping systems. Macmillan, New York, pp 1–10

    Google Scholar 

  • Francis CA (1989) Biological efficiency in multiple cropping systems. Adv Agro 42:1–42

    Google Scholar 

  • Francis CA, Sanders JH (1978) Economic analysis of bean and maize systems: monoculture versus associated cropping. Field Crop Res 1:319–335

    Google Scholar 

  • Fukai S, Trenbath BR (1993) Process determining intercrop productivity and yields of component crops. Field Crop Res 34:247–271

    Google Scholar 

  • Furlan et Lemieux (1996) Méthode d’application et d’évaluation pour l’utilisation des bois raméaux fragmentés. No 67. Groupe de coordination sur les BRF. Université de Laval. Département des Sciences des Bois et de la Forêt. Québec GIK 7P4 Québec, 8 p

    Google Scholar 

  • Giri J (1983) Le sahel demain: Catastrophe ou renaissance? Edition Karthala, 240 p

    Google Scholar 

  • Gliessman SR (1997) Agroecology: ecological processes in sustainable agriculture. Ann Arbor press, Chelsea, 357 p

    Google Scholar 

  • Gliesmann SR (2001) Agro ecosystem sustainability: developing practical strategies. CRC Press, Boca Raton

    Google Scholar 

  • Gomez Delgado F, Moussa R, Rapidel B, Roupsard O (2009) Impacts des arbres d’ombrage sur les services hydrologiques et l’érosion dans un AFS de café du Costa Rica, la mise à l’échelle de la parcelle au bassin versant. In: 2nd world congress of agro-forestry. Agro-forestry, the future of global land use: 23–28 Aug 2009, Nairobi (book of abstracts), p 101

    Google Scholar 

  • Gooding MJ, Kasyanova E, Ruske R, Hauggaard-Nielsen H, Jensen ES, Dahlmann C, Von Fragsten P, Dibet A, Corre-Hellou G, Crozat Y, Pristeri A, Romeo M, Monti M, Launay M (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J Agr Sci 145:469–479

    CAS  Google Scholar 

  • Gosselin F (2008) Redefining ecological engineering to promote its integration with sustainable development and tighten its links with the whole of ecology. Ecol Eng 32(3):199–205

    Google Scholar 

  • Grant RF (1992) Simulation of competition among plant populations under different managements and climates. Agron. Abstr. American Society of Agronomy, Madison

    Google Scholar 

  • Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, de Nooy A k, van del Briel JP (2007) Development and application of bio-economic modelling to compare silvoarable, arable, and forestry system, three European countries. Ecol Eng 29:237–255

    Google Scholar 

  • Grema AK, Hess TM (1994) Water balance and water use of pearl millet-cowpea intercrops in north east Nigeria. Agri Water Manag 26:169–185

    Google Scholar 

  • GRET (1982) Cultures associées en milieu tropical. Eléments d’observation et d’analyse. Dossier Technologies et Développement. Coopération Française, 34, rue d’Umont d’Urville, 75116, Paris Cedex, 75 p

    Google Scholar 

  • Griffon M (2006) Nourrir la planète. Odile Jacob Sciences ed, 455 p

    Google Scholar 

  • Griffon J (2007) Lettre d’Information, No 22, octobre 2007. CIRAD, 1 p

    Google Scholar 

  • Grimes A, Quasem AM, Uddin MS, Jahiruddin N, Mallik RN (1983) Performance of different cropping patterns in 1992–93 at the cropping system research site. RARS, Hathazari, Chittagong

    Google Scholar 

  • Guillerme S, Alet B, Briane G, Coulon F, Maire E (2009) L’arbre hors forêt en France. Diversité, usages et perspectives. Rev. For. Fr. LXI – 5 p

    Google Scholar 

  • Hallé F (2010) La condition tropicale: une histoire naturelle, économique et sociale. Actes Sud, Arles, France, 572 p

    Google Scholar 

  • Harmand JM, Avila H, Dambrine E, Skiba U, De Miguel S, Renderos Duran RV, Oliver R, Jimenez F, Beer J (2007) Nitrogen dynamics and soil nitrate retention. Rica Biogeochem 85:125–139

    CAS  Google Scholar 

  • Haugaard-Nielsen H, Jensen AB, Jensen ES (2001) Interspecies competition, N use an interference with weed in pea-barley intercropping. Field Crop Res 70:101–109

    Google Scholar 

  • Haynes RJ, Swift RS, Stephen RC (1990) Influence of mixed cropping rotations (pasture arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil Till Res 19:77–87. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Hecq H (1958) Le système des cultures Bashis et ses possibilités- Bull. Agric. du Congo belge. XLIX(4):969

    Google Scholar 

  • Hiebsch CK, McCollum RE (1987) Area-x time equivalency ratio. A method for evaluating the productivity of Intercrops. Agron J 79:15–22

    Google Scholar 

  • Hobbs RJ, Morton SR (1999) Moving from descriptive to predictive ecology. Agroforest Syst 45:43–55

    Google Scholar 

  • Hook JE, Gascho GJ (1988) Multiple cropping for efficient use water and nitrogen. In: Hargrove WL (ed) Cropping strategies for efficient use of water and nitrogen. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Madison, pp 7–20

    Google Scholar 

  • Hugar HY, Palled YB (2008) Studies on maize-vegetable intercropping systems. Karnataka J Agric Sci 21:162–164

    Google Scholar 

  • Hulet H (1986) Improving millet/cowpea intercropping in the semi-arid zone of Mali. The Sahel Programme ILCA, P.O. Box 60, Bamako. The Sahel Programme in Haque et al (1986)

    Google Scholar 

  • Hulet H, Gosseye P (1986) Effects of intercropping cowpea on dry matter and grain yield of millet in the semi arid zone of Mali. In: Potentials of forage legumes in farming systems of sub-Saharan Africa. Actes du Séminaire tenu au CIPEA, Addis Abeba. Ethiopie 16–19 Sept 1985, 557 p

    Google Scholar 

  • Hulugalle NR, Lal R (1986) Soil-water balance of intercropped maize and cowpea grown in a tropical hydromorphic soil in western Nigeria. Agron J 77:86–90

    Google Scholar 

  • Hulugalle NR, Willatt ST (1987) Seasonal variation in the water uptake and leaf water potential of intercropped and monocropped chillies. Exp Agric 23:273–282

    Google Scholar 

  • Husson O, Charpentier H, Razanamparany C, Moussa N, Michellon R, Naudin K, Razafintsalama H, Rakotoarinivo CH, Rakotondramanana JN, Enjalric F, Séguy L (2010) Maïs ou sorgho associé à une légumineuse alimentaire volubile (Dolique, Niébé ou Vigna umbellata). CIRAD-Gsdm-TAFA-AFC. Manuel pratique du semis direct à Madagascar, vol III. Chapitre 3. § 2.2, 19 p

    Google Scholar 

  • Huxley PA (1983) Phenology of tropical woody perennials and seasonal crop plants with reference to their management in agroforestry systems. In: Huxley PA (ed) Plant research and agroforestry. ICRAF, Nairobi, pp 503–526

    Google Scholar 

  • IAEA (2002) Réunion Technique sur “l’utilisation des techniques nucléaires pour la gestion intégrée du sol, de l’eau et des éléments nutritifs en agriculture pluviale des zones arides et semi arides en Afrique” AIEA CT projet régional RAF/5/048 Rapport: “Lutte contre la désertification dans le Sahel”. 18–22 mars 2002. AIEA, Vienne et Seibersdorf

    Google Scholar 

  • Idiety E, Bokonon-Ganta E (2002) Fondements climatiques endogènes de l’occupation agricole des sols chez les Bètammaribè de l’Atacora (nord-ouest du Bénin)

    Google Scholar 

  • Innis WH (1997) Intercropping and the scientific basis of traditional agriculture, 1st edn. Intermediate Technology Publications Ltd, London

    Google Scholar 

  • Inter –Réseaux (2013) La promotion de la résilience au Sahel: changement d’approche ou nouvelle mode? Développement rural. Bulletin de synthèse souveraineté alimentaire. No 8. janvier 2013

    Google Scholar 

  • International Rice Research Institute (IRRI) (1974) Atmospheric nitrogen fixation. In: Annual Report 1973. Los Banos, Indonesia, pp 108–111

    Google Scholar 

  • Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant Soil 300:163–171

    CAS  Google Scholar 

  • Izaurralde RC, McGill WB, Juma NG (1992) Nitrogen fixation efficiency, interspecies N transfer, and root growth in barley-field pea intercrop on Black Chernozemic soil. Biol Fertil Soil 13:ll–16

    Google Scholar 

  • Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agr Ecosyst Environ 88:111–117

    Google Scholar 

  • Jackson T (2010) Prospérité sans croissance. De Boeck, Bruxelles

    Google Scholar 

  • Jackson L, van Noordwijk M, Bengtsson L, Foster W, Lipper L, Pulleman M, Said M, Snaddon J, Vodouhe R (2010) Biodiversity and agricultural sustainagility: from assessment to adaptive management. Sci Direct 2:80–87

    Google Scholar 

  • Jagoret P, Bouambi E, Abolo D, Snoeck D (2006) Improvement of traditional coffee farming system in Cameroon by introducing three technical innovations. Biotechnologie, agronomie, société et environnement, 10(3):197–207. ISSN 1370-6233 [11 page(s) (article)] INIST-CNRS

    Google Scholar 

  • Jagoret P, Michel-Dounias I, Snoeck D, Todem Ngnogue H, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agroforest Syst 86(3):493–504

    Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H, Kinane J, Andersen MK, Jørnsgaard B (2005) Intercropping – the practical application of diversity, competition and facilitation in arable organic cropping systems. In: Köpke U, Niggli U, Neuhoff D, Lockeretz W, Willer H (eds) Researching sustainable systems 2005. Proceedings of the first scientific conference of the International Society of Organic Agricultural Research (ISOFAR). International Society of Organic Agriculture Research, Bonn, Allemagne, pp 22–25

    Google Scholar 

  • Jolliffe PA (1997) Are mixed populations of plant species more productive than pure stands? Acta Oecol Scand (OIKOS) 80(3):595–602, issued by the Nordic Society

    Google Scholar 

  • Jong de SM, Jetten VG (2007) Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis. J Geogr Inform Sci Int Inst Geo-Inform Sci Earth Obs ITC, 7500 AA Enschede, 21(5) (Jan). Taylor & Francis, Inc. Bristol, pp 529–545

    Google Scholar 

  • Jung G (1966) Etude de l’influence de l’acacia albida DEL. sur les processus microbiologiques dans le sol et sur leurs variations saisonnières. ORSTOM. Centre de Dakar, rapp. mimeo, 63 p

    Google Scholar 

  • Kalemba L, Ndoki N (1995) Effets d’émondes arbustives et d’engrais minéraux sur le rendement du niébé en cultures en couloirs. Symposium régional sur la recherche et le Développement dans les zones tropicales humides d’Afrique Centrale et de l’Ouest, Yaoundé 1995. CIRAD, BP 5035, Montpellier, pp 231–237

    Google Scholar 

  • Kalifa Traoré A, Madu Doumbia J, Ganry F, Oliver R (2004) Runoff control and Vitellaria paradoxa park land regeneration: effects on soil fertility and carbon storage. Arid Land Res Manag 1818(4), Jan 2004. http://www.informaworld.com/smpp/title~db=all~content=t713926000~tab=issueslist~branches=18

  • Kalra GS, Ganger B (1980) Economics of intercropping of different legumes with maize at different levels of N under rainfed conditions. Ind J Agron 25:181–185

    Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. Forest Ecol Manag 233:195–204

    Google Scholar 

  • Khan ZR, Overholt WA, Hassanali A, Chiliswa P, Wandera J, Muyekho F, Pickett JA, Smart LE, Wadhams LJ (1998) An integrated management of cereal stem borers and Striga weed in a maize based cropping system in Africa. In: Maize production technology for the future: challenges and opportunities,:Proceedings of the 6th Eastern and Southern Africa regional maize conference. CIMMYT (International Maize and Wheat Improvement Centre) and EARO (Ethiopian Agricultural Research

    Google Scholar 

  • Khan ZR, Hassanali A, Overholt WA, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp. and the options for Striga management in Kenya 12 mechanisms defined as allelopathic. J Chem Ecol 28:1871–1885

    Google Scholar 

  • Kihara J, Martius C, Bationo A, Thuita M, Lesueur D, Herrmann L, Amelung W, Vlek PLG (2012) Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl Soil Ecol 58(1):12–20

    Google Scholar 

  • Kinane J, Lyngkjær M (2002) Effect of barley-legume intercrop on disease frequency in an organic farming system. Plant Prot Sci 38:227–231

    Google Scholar 

  • Klaij MC, Hoogmoed WB (1993) Soil management for crop production in the West African Sahel. II. Emergence, establishment, and yield of pearl millet. Soil Till Res 25:301–315

    Google Scholar 

  • Klaij MC, Renard C, Reddy KC (1994) Low input technology options for millet based cropping systems in the Sahel. Exp Agric 30:77–82

    Google Scholar 

  • Klee GA (1980) World systems of traditional resource management. Winston & Son/Edward Amold, London, 290 p

    Google Scholar 

  • Kleitz G (1988) Les systèmes de culture en pays Bamiléké (Ouest Cameroun): Exemple de la chefferie de Bafou. Centre Universitaire de Dschang. CIRAD-CNEARC-ASSAA, Montpellier

    Google Scholar 

  • Knörzer Heike, Simone Graeff-Hönninger, Buqing Guo, Pu Wang, Wilhelm Claupein (2008) The rediscovery of intercropping in China: a traditional cropping system for future Chinese agriculture – rediscovery of intercropping in China. A review

    Google Scholar 

  • Köning D (2004) Conservation et amélioration de la productivité des sols dans des systèmes agro forestiers au Rwanda. Bull. du Réseau Erosion, Gestion de la Biomasse: Erosion et séquestration du Carbone. No 23, IRD-CIRAD-AGER-Labo-MOST, BP 5045, 34032 Montpellier, 23–28 Sept 2002, pp 41–49

    Google Scholar 

  • Kowal JML, Tinker PBH (1959) Soil changes under a plantation established from high secondary forest. J West Afr Inst Oil Palm Res 2:376–389

    CAS  Google Scholar 

  • Kurata T (1986) A study on the farming system in USSA. Quart J Agro Eco 26:179–205

    Google Scholar 

  • Labouisse JP (2004) Systèmes agraires et économie du cocotier au Vanuatu: historique et perspectives. J la Société des Océanistes 118:11–33

    Google Scholar 

  • Lamanda N (2005) Caractérisation et évaluation agroécologique de systèmes de culture agroforestiers: une démarche appliquée aux systèmes de culture à base de cocotiers (Cocos nucifera L.) sur l’île de Malo, Vanuatu. Institut National Agronomique Paris-Grignon. Discipline: Science Agronomique, 230 p

    Google Scholar 

  • Lammerts van Bueren ET, Struik PC, Tiemens-Hulscher M, Jacobsen E (2003) Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci 43:1922–1929

    Google Scholar 

  • Lançon J, Wery J, Rapidel B, Angokaye M, Gérardeaux E, Gaborel C, Ballo D, Fadegnon B (2007) An improved methodology for integrated crop management systems. Agron Sust Dev 27:101–110

    Google Scholar 

  • Langat MC, Okiror MA, Ouma JP, Gesimba RM (2006) The effect of intercropping groundnut (Arachis hypogea L.) with Sorghum (Sorghum bicolor L.) on yield and cash income. Agric Tropica Et Subtropica 39:87–91

    Google Scholar 

  • Larwanou M, Abdoulaye M, Reij C (2006) Etude de la régénération naturelle assistée dans la région de zinder (Niger): Une première exploration d’un phénomène spectaculaire. USAID/EGAT. International Resources Group, Washington, DC, 48 p

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Google Scholar 

  • Le Buannec B (1979) Intensifications des cultures assolées en Ivory Coast. Milieu physique et stabilité des systèmes de cultures motorisées. Agron Trop 34I:54–73

    Google Scholar 

  • Le Courrier (2002) Le système de production agricole de Machobane. Comment faire face à la crise alimentaire au Lesotho. Le Courrier, No 194, Sept–Oct 2002, 2 p

    Google Scholar 

  • Lefrançois S, Thorez J-P (2012) Plantes compagnes au potager bio: Le guide des cultures associées. Terre vivante, 190 p

    Google Scholar 

  • Lefroy EC, Hobbs RJ, Connor MHO, Pate JS (1999) What can agriculture learn from natural ecosystems? Agroforest Syst 53:269–281

    Google Scholar 

  • Léger-Cresson N (1989) Introduction d’une légumineuse fourragère (Mucuna aterrima) dans la culture du maïs pluvial à Colima (Mexique). Thesis USTL. Montpellier, 144 p

    Google Scholar 

  • Lemieux G (1994) Rapport de mission africaine au Sénégal- 2 au 13 décembre 1994. No 5. Groupe de coordination sur les BRF. Université de Laval. Département des Sciences des Bois et de la Forêt. Québec GIK 7P4 Québec, 20 p

    Google Scholar 

  • Lemieux G, Lachance L, Stevanovic-Janezic T (1999) La structure des sols et le bilan du carbone: une fonction de l’effet de serre. Groupe de coordination sur les BRF. Université de Laval. Département des Sciences des Bois et de la Forêt. Québec GIK 7P4 Québec, 8 p

    Google Scholar 

  • Leplaideur A (1978) Les travaux agricoles chez les paysans du Centre-Sud Cameroun. IRAT, BP 5035, 34032, Montpellier. Multigr

    Google Scholar 

  • Li W (2001) Agro-ecological farming systems in China, man and the biosphere series, Jeffers JNR (ed), vol 26, Paris

    Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. Proc Natl Acad Sci U S A 104(27):11192–11196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebman M, Dick E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Google Scholar 

  • Lithourgidis AS, Dordas CA, Lazaridou TB, Papadopoulos II (2008) Silage yield and protein content of common bean intercropped with corn in two row-replacements. Proceedings of the 10th European Society of Agronomy (ESA) Congress, 15–19 Sept 2008, Bologna, pp 217–218

    Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410

    Google Scholar 

  • Long SP (1989) Influence of neem windbreaks on yield, microclimate and water use of millet and sorghum in Niger, West Africa. Texas A & M University, M.S. thesis

    Google Scholar 

  • Lu CH, Van Ittersum MK, Rabbinge R (2003) Quantitative assessment of resource-use efficient cropping systems: a case study for Ansai in the Loess Plateau of China. Eur J Agron 19:311–326

    Google Scholar 

  • Ludwig W (1950) Zur theory der konkurrenz. Neue Ergeb. Prob Zool Klatt Ferstschrift 516–537

    Google Scholar 

  • Lynam JK, Sanders JH, Mason SC (1986) Economics and risk in multiple cropping. In: Francis CA (ed) Multiple cropping systems. Macmillan, New York, pp 250–266

    Google Scholar 

  • Lyonga SN (1980) Aspects économiques de la culture de l’igname au Cameroun. In: Terry ER, Oduro KA, Caveness F (eds) Plantes-racines tropicales: stratégies de recherches pour les années 1980, compte rendu du premier symposium triennal sur les plantes-racines de l’ISTRC-AB. Ibadan: 1980, IITA, pp 219–224

    Google Scholar 

  • MA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Macary F, Bordenave P (2008) Estimation d’un risque environnemental: la contamination des eaux de surface par les intrants agricoles. Application sur les coteaux de Gascogne. Colloque “Vulnérabilité sociétale, risques et environnement”. Toulouse, 14–16 mai 2008

    Google Scholar 

  • Malézieux E (2012) Designing cropping systems from nature. Agron Sust Dev 32(1):15–29

    Google Scholar 

  • Malézieux E, Moustier P (2005) La diversification dans les agricultures du Sud: à la croisée de logiques d’environnement et de marché. I: Un contexte nouveau. Cah Agr 14:2777–281

    Google Scholar 

  • Malézieux E, Trébuil G, Jaeger M (2001) Modélisation des agro écosystèmes et aide à la décision. Collection Repères. Montpellier: Inra éditions. Cirad éditions, 447 p

    Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sust Dev 29:43–62

    Google Scholar 

  • Mandal BK, Dhara MC, Mandal BB, Das SK, Nandy R (1990) Rice, mungbean, soybean, peanut, ricebean and blackgram yields under different intercropping systems. Agron J 82:1063–1066

    Google Scholar 

  • Manu VT, Halavatau S (1995) Agroforestry in food production systems in the South Pacific. In: Foale et al (eds) Soil organic matter management for sustainable agriculture. ACIAR proceedings, Canberra. 56, pp 63–68

    Google Scholar 

  • Marer SB, Lingaraju BS, Shashidhara GB (2007) Productivity and economics of maize and pigeonpea intercropping under rainfed condition in northern transitional zone of Karnataka. Karnataka J Agric Sci 20:1–3

    Google Scholar 

  • Masson SC, Leinher DE, Vorst JJ (1986) Cassava-cowpea and cassava-peanut inter cropping. III. Nutrient concentrations and removal. Agron J 78:441–444

    Google Scholar 

  • Mazoyer M (1972) Développement de la production et transformation agricole marchande d’une formation agraire en Ivory Coast. Communication au Colloque sur les “Stratégies de Développement économiques, Afrique et Amérique Latine”. UN, Institut Africain de Développement économique et de planification, Dakar, Sept 1972

    Google Scholar 

  • Mbomda J (1985) Essai de classification des exploitations agricoles de la chefferie de Bafou. CUDS, IRA Dschang BP 99, Cameroun, 35 p

    Google Scholar 

  • Mérot P (1976) Quelques données sur l’hydrologie de deux bassins versants élémentaires granitiques, bocager et ouvert. Table ronde CNRS “les bocages” Rennes, 1976

    Google Scholar 

  • Meynard JM, Sébillotte M (1989) La conduit des cultures: vers une ingénierie agronomique. Econ Rural 192(193):35–41

    Google Scholar 

  • Mhandawire ABC (1989) Fertilizer research in intercrops. In: Waddington SR, Palmer AFE, Edje OT (eds) Proceeding of a workshop on a cereal/legume intercropping in Eastern and Southern Africa. Lilongwe, 23–27 Jan 1989

    Google Scholar 

  • Miche S (1986) Acacia albida and other multipurpose trees on the fur farmlands in the Jebel Marra highlands, Western Darfur, Sudan. Agroforest Syst 4:89–119

    Google Scholar 

  • Michon G (1985) From forest dweller to tree growing farmer. Indonesian agro-forestry. PHD thesis. USTL. Montpellier, France, 273 p

    Google Scholar 

  • Michon G, de Foresta H (1995) The Indonesian agro-forest model: forest resource management and biodiversity conservation. In: Halladay P, Gilmour DA (eds) Conserving biodiversity outside protected areas. The role of traditional agro-ecosystems. IUCN, Gland

    Google Scholar 

  • Midmore DJ (1993) Agronomic modification of resource use and intercrop productivity. Field Crop Res 34:357–380

    Google Scholar 

  • Mitsch WJ, Jorgensen SE (2003) Ecological engineering: a field whose time has come. Ecol Eng 20:363–377

    Google Scholar 

  • Monzote FR, Lantinga EAM, vanKeulen H (2009) Conversion of specialized dairy farming systems into sustainable mixed farming systems in Cuba. Environ Dev Sust 11:765–783

    Google Scholar 

  • Moreau R (1982) Evolution des sols sous différents modes de mise en culture, en Ivory Coast. O.R.S.T.O.M. Paris 14 p. Comm. In: symposium “Land clearing and development”. I.I.T.A., Ibadan

    Google Scholar 

  • Morelli C (2003) Evaluation des performances agronomiques des jardins au Vanuatu. Estimation de leur durabilité agro-écologique et proposition d’intensification par association aux cocoteraies. Mémoire de DAA Sol et Aménagement Rural ENSAR, Rennes, 57 pp + annexes

    Google Scholar 

  • Morris RA, Garrity DP (1993) Resource capture and utilization in intercropping. Water Field Crop Res 34:303–317

    Google Scholar 

  • Mungaï DN (1995) A microclimatological approach to understanding maize yield performance in alley cropping in the semi-arid areas of Machakos district, Kenya. In: Stigter CJ, Wang’ati FJ, Ng’ang’a JK, Mungai DN (eds) The TTMI-project and the “Picnic” model: an internal evaluation of approaches and results and of prospects for TTMI-Units. -unités. Agricultural University, Wageningen, pp 111–123

    Google Scholar 

  • Muoneka CO, Asiegbu JE (1997) Effect of okra planting and spatial arrangement in intercrop with maize on the growth and yield component species. J Agron Crop Sci 179:201–207

    Google Scholar 

  • Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crop Res 102:72–177

    Google Scholar 

  • Mutuo P (2004) Potential of improved tropical legume fallows and zero tillage practices for soil organic sequestration. Ph.D. dissertation, Imperial College, University of London

    Google Scholar 

  • Nair PKR (1979) Intensive multiple cropping with coconuts in India. Principles, programmes and prospects. Advances in agronomy and crop science, vol 6. Paul Parey ed., Berlin, 147 p

    Google Scholar 

  • Nair PKR (1985) Classification of agroforestry systems. Agroforest Syst 3:97–128

    Google Scholar 

  • Natarajan M, Willey RW (1986) The effects of water stress on yield advantages of intercropping systems. Field Crop Res 13:117–131

    Google Scholar 

  • Naudin K, Gozé E, Balarabe O, Giller KE, Scope E (2009) Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment. Soil Till Res 108(1–2), May–June 2010, 68–76

    Google Scholar 

  • N’Goram K, Snoeck J (1987) Cultures vivrières associées au caféier en Ivory Coast. Food crops intercropping with coffee trees in Ivory Coast. Café Cacao Thé 31(2):121–133

    Google Scholar 

  • Njoku BO, Igbokwe MC, Ohiri AC (1984) Leaching losses and recovery of fertilizer nitrogen in cassava/maize intercrop grown in lysimeter. In: Proceedings of the 6th symposium of International Society for Tropical Root Crops, Etude de la production Vivrière dans la ZAPI de Menguémé (Centre Sus du Cameroun). IRA Yaoundé. Document ronéoté. MD 206. 24p.

    Google Scholar 

  • Noël B (2005) Le Bois Raméal Fragmenté – Plus de carbone pour nos sols. CTA de Strée, Belgique

    Google Scholar 

  • Norman MJT, Pearson CJ, Searl PGE (1984) The ecology of tropical food crops. Cambridge University Press (2nd ed, 1995). 369 pp

    Google Scholar 

  • Nouri M, Reddy KC (1990) Utilisation de l’eau par le mil et le niébé en association et en culture pure. In: Sivakumar MVK et al (ed) Soil water balance in the Sudano-Sahélian zone. Proceedings of an international workshop, Niamey. 18–19 Feb 1991. IAHS Publ. 199. International Association of Hydrological Sciences, Wallingford

    Google Scholar 

  • N’tare BR, Serafini PG, Fussell LK (1987) Recent developments in millet/cowpea cropping systems for low rainfall areas of the Sudano-Sahelian zone of West Africa. In: Soil, crop and water management systems for rainfed agriculture in the Sudano-Sahelian Zone. ICRISAT, Sahelian Center Niamey, Niger, pp 277–290

    Google Scholar 

  • Obedoni BO, Mensah JK, Isesele SO (2005) Effects of intercropping cowpea {vigna unguiculata (L) Walp} and tomato (lycopersicon esculentum Mill)) on their growth, yield and monetary returns. Indian J Agric Res 39(4):286–290

    Google Scholar 

  • Odhiambo GD, Ariga ES (2001) Effect of intercropping maize and beans on striga incidence and grain yield. In: Proceedings of the 7th Eastern Southern Africa regional maize conference. 7:183–186

    Google Scholar 

  • Odhiambo GD, Ransom JK (1993) Effect of dicamba on the control of Striga hermonthica in maize in western Kenya. Afr Crop Sci J 1:105–110

    Google Scholar 

  • Odum HT (1975) Combining energy laws and corollaries of the maximum power principle with visual systems mathematics. In: Ecosystem analysis and prediction. In: Proceedings of the conference on ecosystems. SIAM Institute for Mathematics and Society, Alta, pp 239–263

    Google Scholar 

  • Odum HT (1988) Self-organization, transformity and information. Science 242:1132–1139

    CAS  PubMed  Google Scholar 

  • Odum HT (1995) Energy systems concepts and self-organization: a rebuttal. Oecologia 104(4):518–522

    Google Scholar 

  • Odum HT, Odum B (2003) Concepts and methods of ecological engineering. Ecol Eng 20(2003):339–36

    Google Scholar 

  • Odurukwe SO (1986) Yam-maize intercropping investigations in Nigeria. Trop Agric Trin 63(1):17–21

    Google Scholar 

  • Ofori F, Stern WR (1987) Cereal legume intercropping systems. Adv Agron 41:41–90

    Google Scholar 

  • Ogindo HO, Walker S (2005) Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping in semi arid region in South. Phys Chem Earth 30:799–808

    Google Scholar 

  • Okigbo BN, Greenland DJ (1976) Intercropping systems in tropical Africa. In: Papendick RI, Sanchez PA, Triplett GB (eds) Multiple cropping. ASA, Madison

    Google Scholar 

  • Ong CK, Subrahmanyam P, Khan AAH (2001) The microclimate and productivity of a groundnut/millet intercrop during the rainy season. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Osseni B, N’Guessam A (1990) Etude des phénomènes de concurrence entre les cultures en association. Cas des cultures vivrières associées à l’ananas (sud de la Ivory Coast). Comm. Réunion Ananas. CIRAD- IRFA, BP 5035, Montpellier, 26 p

    Google Scholar 

  • Othieno CO, Stigter CJ, Mwaampja AR (1985) On the use of Stigter’s ratio in expressing the thermal efficiency of grass mulches. Exp Agric 21:169–174

    Google Scholar 

  • Oxfam (2011) Échapper au cycle de la faim: Les chemins de la résilience au Sahel. Oxfam, Groupe de travail sur le Sahel, septembre 2011, 124 p

    Google Scholar 

  • Ozier-Lafontaine H, Vercambre G, Tournebize R (1997) Radiation and transpiration partitioning in a maize-sorghum intercrop: a comparison of two models. Field Crop Res 49:127–145

    Google Scholar 

  • Ozier-Lafontaine H, Lafolie F, Bruckler L, Tournebize R, Mollier A (1998) Modelling competition for water in intercrops: theory and comparison with field experiments. Plant Soil 204:183–201

    CAS  Google Scholar 

  • Palapiapan SP (1988) Cropping systems in the tropic: principles and management. Wiley Eastern Ltd, New Delhi, India, 212 p

    Google Scholar 

  • Pandita AK, Sham MH, Bali AS (2000) Effect of row ratio in cereal-legume intercropping systems on productivity and competition functions under Kashmir conditions. Indian J Agron 45:48–53

    Google Scholar 

  • Papendick RI, Sanchez PA, Triplett GB (eds) (1976) Multiple cropping. ASA, Madison, Spec Publ 27, 378 pp

    Google Scholar 

  • Pavé A (1997) Environnement et développement: approches scientifiques, structuration du domaine et co-évolution des recherches. Nat Sci Soc 1:50–63

    Google Scholar 

  • Payne WA (1997) Managing yield and water use of pearl millet in the Sahel. Soil Sc Soc Am J 89:481–490

    Google Scholar 

  • Pearce D (2001) The economic value of forest ecosystem. Ecosyst Health 7(4):284–296

    Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agroforest Syst 66:243–257

    Google Scholar 

  • Piraux M, Buldgen A, Steyaert P, Dieng A (1997) Intensification agricole en région sahélo-soudanienne: 2. Productivité économiques et risques. Biotechnol Agron Soc Environ 1(3):209–220

    Google Scholar 

  • Planète (2012) “L’Afrique peut se nourrir et nourrir le monde”. Planète, LE MONDE |09 Oct 2012 à 12h41

    Google Scholar 

  • Prabhakar BS, Srinivas K (1989) Weighted income equivalent ratio for evaluating vegetable intercropping systems. S Indian Hortic 37:144–149

    Google Scholar 

  • Prasad RB, Brook RM (2005) Effect of varying maize densities on intercropped maize and soybean in Nepal. Exp Agric 41:365–382

    Google Scholar 

  • Rabot C (1982) Les jardins vivriers d’une petite région de la Guadeloupe. Approche agro-écologique des associations végétales. Mémoire ENITA-Dijon/CEAT, 105 p

    Google Scholar 

  • Rachie KO, Roberts LM (1974) Grain legumes of the lowland tropics. In: Brady NC (ed) Advances in agronomy, vol 26. American Society of Agronomy, Academic Press, New York, pp 1–132

    Google Scholar 

  • Rajvanshi I, Mathur BN, Sharma GL (2002) Effect of intercropping on incidence of Heterodera avenae in wheat and barley crops. Annu Plant Prot Sci 10:365–410

    Google Scholar 

  • Rämert B, Lennartsson M, Davies G (2002) The use of mixed species cropping to manage pests and diseases theory and practices. Powel et al (eds) UK Organic Research 2002: proceeding of the COR conference, 26–28 mars 2002, Aberystwth, pp 207–210

    Google Scholar 

  • Ransom JK (1989) Weed control in maize/legume intercrops. Research methods for cereal/legume intercropping. In: Waddington SR, Palmer AFE, Edje OT (eds) Proceeding of a workshop on a cereal/legume intercropping in Eastern and Southern Africa. . Lilongwe, 23–27 Jan 1989, pp 42–45

    Google Scholar 

  • Rao MR, Singh S (1988) Management practices for intercropping systems. In: Proceedings international workshop on intercropping. ICRISAT, Hydrabadpp 17–21

    Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agro-forestry systems. Agroforest Syst 38:3–50

    Google Scholar 

  • Ravignan de (1969) Etude de la production vivrière dans la ZAPI de Menguémé (Centre Sud du Cameroun). Doc. Ronéoté. MD 206, 24 p

    Google Scholar 

  • Reddy MN, Ramanatha Chetty CK (1984) Staple land equivalent ratio for assessing yield advantage from intercropping. Exp Agr 20:171–177

    Google Scholar 

  • Reddy MS, Willey RW (1981) Growth and resources use studies in an intercrop of pearl millet/groundnut. Projet Bututsi. Fields Crop Res 4:13–24

    CAS  Google Scholar 

  • Renard C, Vandenbeldt RJ (1990) Bordure d’Andropogon gayanus Kunth comme moyen de lutte contre l’érosion éolienne au Sahel. L’Agronomie Tropicale 45(3):227–231

    Google Scholar 

  • Risch SJ (1983) Intercropping as cultural pest control: prospects and limitations. Environ Manage 7:9–14

    Google Scholar 

  • Rishirumuhirwa T (1996) Potentiel du bananier dans la gestion et la conservation des sols ferralitiques du Burundi. Cahier ORSTOM. Pédologie XXVIII(2):367–383

    Google Scholar 

  • Rishirumuhirwa TH, Nyabuhwanya J (1993) Bananeraie, modes de paillis et restauration des sols acides. Bull 13:143–157. Réseau Erosion; ORSTOM, Montpellier

    Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist, vol 18, Part 2, Cambridge University Press Printed in the United Kingdom, 52 p

    Google Scholar 

  • Roger AF (2013) Echobio.fr/boutique magazine No 40 mars/avril 2013, pp 14–15

    Google Scholar 

  • Roose E (1983) Ruissellement et érosion avant et après défrichement en fonction du type de culture en Afrique Occidentale. Cah O.R.S.T.O.M. sér Pédol XX(4):327–339

    Google Scholar 

  • Roose E (1994) Introduction à la gestion conservatoire de l’eau, de la biomasse et de la fertilité des sols (GCES). Bulletin Pédologie de la FAO, Roma, Italia, 70, 420 p

    Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats – fauna of collards (Brassica oleracea). Ecol Monogr 4:95–120

    Google Scholar 

  • Rotillon G (2005) Economie des ressources naturelles. La Découverte, Paris

    Google Scholar 

  • Rousseau GX, Deheuvels O, Rodriguez Arias I, Somarriba E (2012) Indicating soil quality in cacao-based agroforestry systems and old-growth forests: the potential of soil macrofauna assemblage. Ecol Indic 23:535–543

    Google Scholar 

  • Salako FK, Tian G (2001) Litter and biomass from planted and natural fallows on a degraded soil in south-western Nigeria. Agroforest Syst 51:239–251

    Google Scholar 

  • Salau OA, Opara-Nadi OA, Swennen R (1992) Effects of mulching on soil properties, growth and yield of plantain on a tropical ultisol in south eastern Nigeria. Soil Till Res 23:73–93

    Google Scholar 

  • Salez P (1990) Maïs-légumineuses dans l’Ouest du Cameroun – relation entre espèces associées. In: Cereals of the semi-arid tropics. Regional seminar on cereal of the semi-arid tropics (Garoua, Cameroun). 1989-09-12/1989-09-16. 3(Réunion) CIRAD-IRAT IFS (Stockholm, Suede)

    Google Scholar 

  • Samson C, Autfray F (1985) Effet de la géométrie de plantation sur la production d’une association maïs-soja dans l’Ouest Cameroun. Miméo, Station IRA, BP 44 Dschang, 7 p

    Google Scholar 

  • Sanchez PA, Palm CA, Davey CB, Scott LT, Russell CE (1985) Trees as soil improvers in the humid tropics? In: Cannell MGR, Jackson JE (eds) Attributes of trees as crops plants. Institute of Terrestrial Ecology (NERC), Abbots Ripton, pp 327–358

    Google Scholar 

  • Sans FX, Altieri MA (unpublished) Effects of intercropping and fertilization on weed abundance, diversity and resistance to invasion. www.ub.es/agroecologia/pdf

  • Saucke H, Ackermann K (2005) Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res 46:453–461

    Google Scholar 

  • Schmidtke K, Neumann A, Hof C, Rauber R (2004) Soil and atmospheric nitrogen uptake by lentil (Lens culinaris Medik) as monocrops and intercrops. Field Crop Res 87:245–256

    Google Scholar 

  • Schoeny A, Jumel S, Rouault F, Lemarchand E, Tivoli B (2010) Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight. Eur J Plant Pathol 126:317–331

    Google Scholar 

  • Schroth G, Harvey C, Vincent G (2004) Complex agroforests: their structure, diversity and potential role in landscape conservation. In: Schroth G, da Fonseca GAB, Harvey C, Gascon C, Vasconcelos HL, Izac AM (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC

    Google Scholar 

  • Scopel E, Findeling A, Chavez Guerra E, Corbeels M (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron Sust Dev 25:425–432

    CAS  Google Scholar 

  • Séguy L (2003) Rapport de mission à Madagascar. 19-avril-7 mars 2003. Cirad, Montpellier, 35 p

    Google Scholar 

  • Séguy L, Silva JL, Ribeiro DA, Bouzinac S (1982) L’amélioration variétale du riz pluvial dans les systèmes de production manuels pratiqués par les petits paysans de la région du Cocais au Maranhão, Nord-Est du Brésil, 1979–1988. EMAPA, Saõ Luis, 51 p

    Google Scholar 

  • Séguy L, Bouzinac S et al (1994) Gestion des sols et des cultures dans les zones de frontières agricoles des cerrados humides du centre-ouest. Année agricole 1993/94. Document interne CIRAD-CA, Montpellier, 256 p

    Google Scholar 

  • Séguy L, Bouzinac S, Brésiliens (2008) La symphonie inachevée du semis direct dans le Brésil central: Le système dominant dit de “semis direct”. Limite et dégâts, éco-solutions et perspectives: la nature au service de l’agriculture durable. Cirad-Uepg-Embrapa-Facual- 214 p

    Google Scholar 

  • Sekamatte BM, Ogenga-Latigo M, Russell-Smith A (2003) Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Prot 22:87–93

    Google Scholar 

  • Seran TH, Brintha I (2009) Study on biological and economic efficiency of Radish (Raphanus sativus L.) intercropped with vegetable amaranthus (Amaranthus tricolor L.). Open Hortic J 2:17–21

    Google Scholar 

  • Seran TH, Jeyakumaran J (2009) Effect of planting geometry on yield of capsicum (Capsicum annum L.) intercropping with vegetable cowpea (Vigna unguiculata L.). J Sci 6:11–19

    Google Scholar 

  • Shetty SVR (1987) Design and evaluation of alternative production systems: pearl millet/maize and cereal/groundnut systems in Mali. In: Soil, crop and water management systems for rainfed agriculture in the Sudano-Sahelian Zone. ICRISAT, Sahelian Center Niamey, Niger

    Google Scholar 

  • Sieffert A, Truong HXP (1992) Mode de production et stratégies paysannes des communautés rurales de la zone forestière dans l’Est Cameroun. Diagnostic pour le Projet d’Aménagement Pilote Intégré. Diplôme d’Ingénieur d’Agronomie Tropicale. CNEARC-ENGREF-Ministère de la Coopération et du développement, France, 158 p. 12 cartes

    Google Scholar 

  • Sikirou R, Wydra K (2008) Effect of intercropping cowpea with maize or cassava on cowpea bacterial blight and yield. J Plant Dis Prot 115:145–151

    Google Scholar 

  • Singh M, Joshi NL (1994) Performance of pearl millet‐based intercropping systems under drought conditions. Arid Soil Res Rehabil 8(3):277–283

    Google Scholar 

  • Singh SK, Hene YL, Reddy MV (1990) Influence of cropping systems on Macrophimina phaseolina populations in soil. Am Phytopathol Soc, ETATS-UNIS, St. Paul, 74(10):812–814

    Google Scholar 

  • Sinha AK, Nathan AK, Sing AK (1985) Radiation climate and water-use studies in intercropping systems. J Nucl Agric Biol 14(2):64–69

    Google Scholar 

  • Sissoko F, Autfray P, Rapidel B (2003) Effet du labour en culture attelée et de système à couverture végétale sur la disponibilité de l’eau en début de saison des pluies au Mali. IER, Sikasso Mali-CIRAD/IER BP 1813 Bamako, Mali-CIRAD, Montpellier. Document obtenu sur le site Cirad du réseau. http://agroecologie.cirad.fr

  • Skerman PJ (1982) Tropical forage legumes. FAO: Plant production and protection series no 2. Food and Agriculture Organisation (FAO), Rome, 609 pp

    Google Scholar 

  • Smith ME, Francis CA (1986) Breeding for multiple cropping systems. In: Francis CA (ed) Multiple cropping systems. MacMillan Publishing Company, New York

    Google Scholar 

  • Snoeck D, Lacote R, Keli ZJ, Doumbia A, Chapuset T, Jagoret P, Gohet E (2013) Association of hevea with other tree crops can be more profitable than hevea monocrop during first 12 years. Ind Crop Prod 43:578–586

    Google Scholar 

  • SOYNICA- Nicaragua. CD sur la technique de la fabrication des extraits foliaires: jacques.subtil@yahoo.fr

    Google Scholar 

  • Steiner KG (1985) Cultures associées dans les petites exploitations agricoles tropicales; en particulier en Afrique de l’Ouest. GTZ, Eschborn, 347 p

    Google Scholar 

  • Stigter CJ (1984) Wind protection in traditional microclimate management and manipulations examples from East Africa. Grace NJ (ed) Progress in biometeorology; vol 2: The effect of the shelter on the physiology of plants and animals. Swetz and Zeitlinger, Lisse (Th), pp 145–155.e Netherlands

    Google Scholar 

  • Stigter CJ (1994) Management and manipulation of microclimate. In: Griffiths JF (ed) Hanbook of agricultural meteorology. Oxford University Press, New York, pp 273–284

    Google Scholar 

  • Szumigalski A, Rene V (2005) Weed suppression and crop production in annual intercrops. Weed Sci 53:813–825

    CAS  Google Scholar 

  • Tajuddin I (1986) Integration of animals in rubber plantation. Agroforest Syst 4:55–66

    Google Scholar 

  • Tardit MC (1961) Les Bamilékés de l’Ouest-Cameroun. Berger-Levrault, Paris. Coll. “ l’Homme d’Outre-Mer”. Nle Série. T. IV

    Google Scholar 

  • Tardieu M (1970) Tentative dans la fertilisation des cultures associées. Séminaire de la Fondation Ford/IRAT (Institut de Recherche Agronomique Tropical -France)/IITA (International Institute of Tropical Agriculture) sur les systèmes traditionnels de l’agriculture africaine et leur amélioration. IITA-IBADAN, Nigéria, 16–20 Nov, 1970

    Google Scholar 

  • Tétio Kagho (1994) Impact du système de culture associée mixte sur l’agriculture durable : cas des environs de Dschang dans les Hauts Plateaux de l’Ouest. Séminaire Régional sur les Systèmes Agraires et Agriculture Durable en Afrique sub-saharienne. Cotonou, 1994-02-07/1994-02-11 IFS (Stockholm)

    Google Scholar 

  • Thé C, Calba H, Horst WJ, Zonkeng C (2001) Three years performance of a tolerant and a susceptible maize cultivar on non-amended and amended acid soil. In: Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer, Dordrecht, pp 984–985. International plant nutrition colloquium. 14, 27 Jul–3 Aug 2001. Hanovre, Allemagne

    Google Scholar 

  • Theunissen J (1997) Intercropping in field vegetables as an approach to sustainable horticulture. Outlook Agr 26:95–99

    Google Scholar 

  • Thior P (2002) Test de refertilisation et de cultures associées dans les communautés rurales de Dya et Ndiébel (Région de Kaolack ) Hivernage 2002. Recherche-action-formation en milieu paysan. Projet Autopromotion et Gestion des Ressources Naturelles au Sine Saloum (PAGERNA).GTZ & MEPN, 15 p

    Google Scholar 

  • Thobatsi TH (2009) Growth and yield of maize (Zea mays L.) and cowpea (Vigna unguiculata) in an intercropping system. University of Natural and Agricultural Sciences. Department of Plant Production and Soil Science, University of Pretoria, 149 p

    Google Scholar 

  • Tiessen H, Steward WB, Hunt HW (1984) Concepts of soil organic matter transformation in relation to organo-mineral practice size fraction. Plant and Soil 76:287–295

    CAS  Google Scholar 

  • Torquebiau E (1992) Are tropical agro-forestry homegardens sustainable? Agr Ecosyst Environ 41:189–207

    Google Scholar 

  • Torquebiau E (2000) A renewed perspective on agro forestry concepts and classification. Compte Rendu de l’Académie Scientifique. Paris, France, 1009

    Google Scholar 

  • Torquebiau E, Penot E (2006) Ecology versus economics in tropical multistrata agroforests. In: Kumar BM, Nair PKR (eds) Tropical home gardens: a time-tested example of sustainable agroforestry. Springer, Berlin, pp 269–282

    Google Scholar 

  • Torquebiau E, Mary F, Sibelet N (2002) Les associations agroforestières et leurs multiples enjeux: the multiple challenges of agro forestry associations. Bois etforêts des tropiques 271:23–35

    Google Scholar 

  • Tourte R (1971) Thèmes légers et thèmes lourds, systèmes intensifs: voies différentes ouvertes au développement agricole du Sénégal. Agro Trop 42(4):258–268

    Google Scholar 

  • Traoré S, Bagayoko M, Coulibaly BS, Coulibaly A (2004) Amélioration de la gestion de la fertilité des sols et celle des cultures dans les zones sahéliennes de l’Afrique de l’Ouest: une condition sine qua none pour l’augmentation de la productivité et de la durabilité des systèmes de culture à base de mil

    Google Scholar 

  • Tremblay R (2006) Les Iroquoiens du St-Laurent - Éditions de l’Homme, France, pp 52–54

    Google Scholar 

  • Trenbath BR (1975) Diversify or be damned. Ecologist 5:76–83

    Google Scholar 

  • Trenbath BR (1976) Plant interactions in mixed crops communities. In: Papendick RI, Sabchez PA, Triplett GB (eds) Multiple cropping, vol 27. ASA Spec. Publi, Madison, USA, pp 129–170

    Google Scholar 

  • Trenbath BR (1999) Multispecies cropping systems in India. Prediction of their productivity, stability, resilience and ecological sustainability. Agroforest Syst 45:81–107

    Google Scholar 

  • Tsubo M, Walker S, Mukhala E (2001) Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crop Res 71:17–29

    Google Scholar 

  • Tsubo M, Mukhala E, Ogindo HO, Walker S (2003) Productivity of maize-bean intercropping in a semi-arid region of South Africa. Water SA 29(4):361–388

    Google Scholar 

  • Ullah A, Bhatti MA, Gurmani ZA, Imran M (2007) Studies on planting patterns of maize (Zea mays L.) facilitating legumes intercropping. J Agric Res 45:113–118

    Google Scholar 

  • USAID, CILSS, IRG (2002) Investir dans la forêt de demain: vers un programme de révitalisation de la foresterie en Afrique de l’Ouest. Washington/Ouagadougou, 35 p

    Google Scholar 

  • Valentin C, Chevallier P, Fritsch E, Janeau JL (1990) Le fonctionnement hydrodynamique aux échelles ponctuelles. In: HYP’ERBAV, 1990, pp 147–163. Etudes et Thèses, ORSTOM30, 7 p

    Google Scholar 

  • Valet S (1968) Premiers résultats de la fertilisation minérale dans les conditions pédoclimatiques de l’Ouest-Cameroun. Miméo IRAT - BP 99, Dschang, Cameroun, 55 p

    Google Scholar 

  • Valet S (1969) Besoin en eau et production végétale dans l’Ouest-Cameroun. Miméo IRAT Réunion de Programmation Bouaké, Ivory Coast. IRAT, BP 5045, 34032, Montpellier, France, 12 p

    Google Scholar 

  • Valet S (1972) Bilan des expérimentations sur cultures associées dans l’Ouest-Cameroun. GERDAT-IRAT - BP 99, Dschang, Cameroun, 43 p. (Coll. Tardieu M, Praquin J, Séguy L)

    Google Scholar 

  • Valet S (1974a) Note sur des observations et mesures de quelques facteurs climatiques, physiques et pédologiques et de leur incidence sur la production agricole à la station de Dschang (Cameroun). Agro Trop XXIX(12):1266–1287

    Google Scholar 

  • Valet S (1974b) Observations et mesures sur des cultures associées traditionnelles en pays Bamiléké et Bamoun. Miméo IRAT- BP 99, Dschang, Cameroun, 30 p

    Google Scholar 

  • Valet S (1976) Observations et mesures sur des cultures associées traditionnelles en pays bamiléké et bamoun. (Essais de fertilisation et de pré vulgarisation de fumures- Cameroun). IRAT, BP 99 Dschang-Cameroun. IRAT, BP 5045, 34032, Montpellier, France, 38 p

    Google Scholar 

  • Valet S (1980) Notice explicative des cartes: Cartes de zonation géo-climatique (1/400 000), des pentes des paysages agro géologiques (1/200 000) et de mise en valeur agricole des paysages agro géologiques de l’Ouest-Cameroun (1/400 000). GERDAT-IRAT. BP 5035, Montpellier, France, 34032. 117 p.- 3 cartes

    Google Scholar 

  • Valet S (1995) Concept de gestion et de valorisation agricole du report hydrique (Run on): écodéveloppement alternatif en région soudano-sahélienne. Colloque “Intensification agricole au Sahel”. INSAH BP 1530 Bamako, Mali, 28 Nov–2 Déc 1995, 28 p

    Google Scholar 

  • Valet S (1999) L’aménagement traditionnel des versants et le maintien des cultures associées traditionnelles: cas de l’Ouest-Cameroun. Colloque International “L’homme et l’Erosion”. IRD-CIRAD, BP 5045, Montpellier, 34032, France, 12–15 Dec 1999. Yaoundé, 17 p

    Google Scholar 

  • Valet S (2000) Nouvelle stratégie d’eco-développement durable par la gestion et la valorisation du report hydrique. SECHERESSE J Libbey eurotext, 127, ave. De la République, 92120, France. 11(4):239–247, 12 p

    Google Scholar 

  • Valet S (2004) Effet de la sécheresse sur les associations culturales vivrières de l’Ouest-Cameroun. Secheresse (J. Libbey Eurotext, 127, ave. de la République, 92120), France, 11(4):239–247

    Google Scholar 

  • Valet S (2007) Les associations culturales traditionnelles améliorées: Une alternative écologique à l’intensification agricole face au changement climatique, démographique et à la mondialisation”. In: Roose E, Albergel J, Laouina A, Sabir M (eds) Efficacité de la gestion de l’eau et de la fertilité des sols en milieux semi arides. Enfi-IRD-Au francophonie. Réseau E-GCES de l’AUF. Conférence ISCO Marrakech-Maroc. 14–19 mai 2006, pp 152–163

    Google Scholar 

  • Valet S (2011a) Les cultures associées multi-étagées traditionnelles innovantes. Services écologiques: résilience et durabilité des éco-agro-systèmes. Colloque Production agricole: pour une réconciliation entre durabilité et rentabilité économique, 6–9 juin 2011- Université Ouverte de Ho Chi Minh, 19 p

    Google Scholar 

  • Valet S (2011b) Techniques biophysiques traditionnelles innovantes de contrôle du ruissellement et de gestion agro forestière du report hydrique. Colloque “Production agricole: pour une réconciliation entre durabilité et rentabilité économique”. 6–9 juin 2011- Université Ouverte de Ho Chi Minh, 8 p

    Google Scholar 

  • Valet S, Motelica-Heino M (2010) Les cultures associées traditionnelles à l’échelle du champ: Une technique biophysique raisonnée de lutte contre les tempêtes et la dégradation des agro-systèmes. Colloque international: Effets des techniques antiérosives sur la productivité des terres tropicales, Port-au-Prince (Haïti), 19–24 octobre 2010 (accepté)

    Google Scholar 

  • Valet S, Ozier-Lafontaine H (2013) Again water scarcity, use agro ecological systems and bio pratices. Conference on desertification and Land dégradation. EGU (European Geoscience Union)- (17–18 juin 2013) Ghent Belgium. Universiteit Gent-Gent BC (big in creativity) -International Centre for Eremologie (UNESCO). Poster

    Google Scholar 

  • Valet S, Sar PS (1999) Concept de report hydrique superficiel (Runon): III) Sa gestion et sa valorisation pour un éco-développement durable l’échelle de la parcelle en zone soudano-sahélienne. 24èmes Journées Scientifiques du GFHN, 23–24 Nov 1999. Strasbourg. Mécaniques des fluides, IFARE, ENGEES, ULP, CNRS, 2 p

    Google Scholar 

  • Valet S, Motélica-Heino M, Le Coustumer PH, Sarr PS (2008) The Sudan-Sahelian grove: a multi-scale ecological alternative to climatic change. XIIIème Congrès Mondial de l’Eau. Changements Globaux et Ressources en Eface à des pressions toujours plus nombreuses et diversifiées. 1 au 4 septembre 2008. Montpellier, 34032 France

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non renewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Vandermeer J-H (1986) Intercropping. In: Carrol CR, Vandermeer JH, Rosset PM (eds) Agroecology. McGraw-Hill, New York, pp 481–516

    Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Duivenbooden N, Pala M, Studer C, Bielders CL, Beukes DJ (2000) Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review. Koninklijke Landbouwkundige Vereniging (KLV) Published by Elsevier B.V. NJAS – Wageningen J Life Sci 48(3):213–236

    Google Scholar 

  • Van Noordwijk M, Lawson G, Groot JJR, Hairiah K (1996) Root distribution in relation to nutrients and competition. In: Ong CK, Huxley PA (eds) Tree- crop interactions – a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Vilich-Meller V (1992) Mixed cropping of cereals to suppress plant diseases and omit pesticide applications. Biol Agr Hort 8:299–308

    Google Scholar 

  • Vlachostergios DN, Roupakias DG (2008) Response to conventional and organic environment of thirty-six lentil (Lens culinaris Medik.) varieties. Euphytica 163:449–457

    Google Scholar 

  • Vlachostergios DN, Lithourgidis AS, Roupakias DG (2010) Adaptability to organic culture system of lentil (Lens culinaris Medik) varieties developed from conventional breeding programs. J Agr Sci. doi:10.1017/S002185961000050X

    Google Scholar 

  • Wakindiki IIC, Ben-Hur M (2001) Indigenous soil and water conservation techniques: effects on runoff, erosion, and crop yields under semi-arid conditions. Aust J Soil Res 40(3):367–379

    Google Scholar 

  • Weber J-L (2007) Implementation of land and ecosystem accounts at the European Environment. Agency Ecol Econ 61(4):695–707, 15 Mar 2007

    Google Scholar 

  • Weber JL (2008) Au-delà du PIB, à la recherche d’indicateurs synthétiques. Les relations entre environnement et développement durable. Comptabilité des écosystèmes et de leurs services. -12ème colloque de l’Association de Comptabilité Nationale Paris, 4–6 juin 2008

    Google Scholar 

  • Webert J (1977) Structures agraires et évolution des milieux ruraux : le cas de la région cacaoyère du Centre-Sud Cameroon. Cahiers ORTOM, Série Sciences Humaines XIV(2):113–141

    Google Scholar 

  • Weil RW, McFadden ME (1991) Fertility and weed stress on performance of maize/soybean intercrop. Agron J 83:717–721

    Google Scholar 

  • Welsh JP, Philipps L, Bulson HAJ, Wolfe M (1999) Weed control for organic cereal crops. In: Proceedings of the Brighton crop protection conference – Weeds, Brighton, pp 945–950

    Google Scholar 

  • Whitmore AP (2000) The biological management of soil fertility project. Neth J Agric Sci 48:115–122

    Google Scholar 

  • Whitmore AP, Schroder JJ (2007) Intercropping reduces nitrate leaching from under field crops without loss of yield: a modelling study. Eur J Agron 27:81–88

    CAS  Google Scholar 

  • Whitmore AP, Cadisch G, Toomsan B, Limpinuntana V, Van Noordwijk M, Purnomosidhi P (2000) An analysis of the economic value of novel cropping systems in N.E. Thailand and S. Sumatra. Neth J Agric Sci 48:105–114

    Google Scholar 

  • Wilken GC (1972) Microclimate management by traditional farmers. Geogr Rev 62:544–566

    Google Scholar 

  • Willey RW (1979) Intercropping – its importance and research needs. Part I: competition and yield advantage; Part II: agronomy and research approaches. Field Crop Abstr 32(1) (2):1–10

    Google Scholar 

  • Willigen de P, Van Noordwijk M (1987) Roots, plant production and nutrient use efficiency, Ph.D. thesis, Agricultural University, Wageningen, 281 p

    Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, Lammerts van Bueren ET (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346

    Google Scholar 

  • Zegada-Lizarazu W, Izumi Y, Iijima M (2006) Water competition of intercropped pearl millet with cowpea under drought and soil compaction stresses. Plant Prod Sci 9(2):123–132

    Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312

    CAS  Google Scholar 

  • Zhen L, Routray JK, Zoebisch MA, Chen G, Xie G, Cheng S (2005) Three dimensions of sustainability of farming practices in the North China Plain; a case study from Ningjin County of Shandong Province, PR China. Agr Ecosyst Environ 105:507–522

    Google Scholar 

  • Zhu Z (1991) Evaluation and model optimisation of Paulownia intercropping system – a project report, agroforestry systems in China. Chinese Academy of Forestry, IDRC, pp 30–43

    Google Scholar 

  • Zougmoré R, Kambou F, Ouattara K, Guillobez S (1998) The cropping system of sorghum/cowpea in the prevention of runoff and erosion in the Sahel of Burkina Faso. In: Buckless D, Eteka A, Osiname O, Galiba M, Galiano G (eds) Cover crops in West Africa: contributing to sustainable agriculture. International Development Research Centre, Ottawa, pp 217–224

    Google Scholar 

  • Zougmoré R, Kambou F-N, Ouattara K, Guillobez S (2000) Sorghum-cowpea intercropping: an effective technique against runoff and soil erosion in the Sahel (Saria, Burkina Faso). Arid Land Res Manag 14:329–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Ozier-Lafontaine .

Editor information

Editors and Affiliations

Glossary

ANR

Assisted Natural Regeneration

CA

Conservation Agriculture

CFA

Franc des Colonies Françaises d’Afrique

CIRAD

Centre International de Recherche Agronomique et de Développement

DER

Density Equivalent Ratio

DMC

Direct Seeding Mulch-Based Cropping System

FAO

Food and Agriculture Organization

FEER

Fertility Efficiency Equivalent Ratio

ESS

EcoSystemic Services

ICS

Inter Cropping Systems

ICS

Inter Cultural System

IER

Income Equivalent Ratio

IRRI

International Rice Research Institute

Kram

Run off Coefficient

LAI

Leaf Area Index

LAR

Leaf Area Ratio

LER

Land Equivalent Ratio

MCS

Multi-species Cropping Systems

MEA

Millennium Ecosystem Assessment

MOS

Matter Organic Sum

N

Nitrogen

OC

Organic Carbon

OM

Organic Matter

P

Phosphorus

RCW

Rameal Chipped Wood

RER

Root Equivalent Ratio

TE

Transpiration over Evaporation

UNISDR

United Nations International Strategy for Disaster Reduction

USAID

United States Agency for International Development

WuEER

Water use Efficiency Equivalent Ratio

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valet, S., Ozier-Lafontaine, H. (2014). Ecosystem Services of Multispecific and Multistratified Cropping Systems. In: Ozier-Lafontaine, H., Lesueur-Jannoyer, M. (eds) Sustainable Agriculture Reviews 14. Sustainable Agriculture Reviews, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-06016-3_7

Download citation

Publish with us

Policies and ethics