Skip to main content

Evaluation of IR Applications with Constrained Real Estate

  • Conference paper
Advances in Information Retrieval (ECIR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8416))

Included in the following conference series:

Abstract

Traditional IR applications assume that there is always enough space (“real estate”) available to display as many results as the system returns. Consequently, traditional evaluation metrics were typically designed to take a length cutoff k of the result list as a parameter. For example, one computes DCG@k, Prec@k, etc., based on the top-k results in the ranking list. However, there are important modern ranking applications where the result real estate is constrained to a small fixed space, such as the search verticals aggregated in the Web search results and the recommendation systems. For such applications, the following tradeoff arises: given a fixed amount of real estate, shall we show a small number of results with rich captions and details, or a larger number of results with less informative captions? In other words, there is a tradeoff between the length of the result list (i.e., quantity) and the informativeness of the results (i.e., quality). This tradeoff has important implications for evaluation metrics, since it leads the length cutoff k hard to be determined a priori. In order to tackle this problem, we propose two desirable formal constraints to capture the heuristics of regulating the quantity-quality tradeoff, inspired by the axiomatic approach to IR. We then present a general method to normalize the well-known Discounted Cumulative Gain (DCG) metric for balancing the quantity-quality tradeoff, yielding a new metric, that we call Length-adjusted Discounted Cumulative Gain (LDCG). LDCG is shown to be able to automatically balance the length and the informativeness of a ranking list without requiring an explicit parameter k, while still preserving the good properties of DCG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arguello, J., Diaz, F., Callan, J., Carterette, B.: A methodology for evaluating aggregated search results. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 141–152. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 89–96 (2005)

    Google Scholar 

  3. Busin, L., Mizzaro, S.: Axiometrics: An axiomatic approach to information retrieval effectiveness metrics. In: Proceedings of the 4th International Conference on Theory of Information Retrieval: Advances in Information Retrieval Theory, ICTIR 2013 (2013)

    Google Scholar 

  4. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 621–630 (2009)

    Google Scholar 

  5. Chuklin, A., Schuth, A., Hofmann, K., Serdyukov, P., de Rijke, M.: Evaluating aggregated search using interleaving. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2013, pp. 669–678 (2013)

    Google Scholar 

  6. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM 2008, pp. 87–94 (2008)

    Google Scholar 

  7. Fang, H., Zhai, C.X.: An exploration of axiomatic approaches to information retrieval. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, pp. 480–487 (2005)

    Google Scholar 

  8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  9. Lv, Y., Zhai, C.: Lower-bounding term frequency normalization. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 7–16 (2011)

    Google Scholar 

  10. Robertson, S.E., Kanoulas, E., Yilmaz, E.: Extending average precision to graded relevance judgments. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 603–610 (2010)

    Google Scholar 

  11. Zhou, K., Cummins, R., Lalmas, M., Jose, J.: Evaluating large-scale distributed vertical search. In: Proceedings of the 9th Workshop on Large-Scale and Distributed Informational Retrieval, LSDS-IR 2011, pp. 9–14 (2011)

    Google Scholar 

  12. Zhou, K., Cummins, R., Lalmas, M., Jose, J.M.: Evaluating aggregated search pages. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 115–124 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lv, Y., Fuxman, A., Chandra, A.K. (2014). Evaluation of IR Applications with Constrained Real Estate. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06028-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06027-9

  • Online ISBN: 978-3-319-06028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics