Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

  • 1173 Accesses

Abstract

We present a new immersed method for Computational Fluid Dynamics applications. It is based on the use of Non Uniform Rational B-Splines (NURBS). The distance function to an immersed solid is computed directly from its Computer Aided Design (CAD) description. This allows to bypass the generation of surface meshes and to obtain accurate levelset functions for complex geometries. Combined with a metric based anisotropic mesh adaptation and stabilized Finite Elements Method (FEM), it allows a novel, efficient and flexible approach to deal with a wide range of fluid structure interaction problems. The metric field is computed directly at the node of the mesh using the length distribution tensor and an edge based error analysis. Several 2D and 3D numerical examples will demonstrate the applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreiss, H., Petersson, A.: A second order accurate embedded boundary method for the wave equation with dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Glowinski, R., Pan, T., Kearsley, A., Periaux, J.: Numerical simulation and optimal shape for viscous flow by a fictitious domain method. Int. J. Numer. Methods Fluids 20, 695–711 (2005)

    Article  MathSciNet  Google Scholar 

  4. Hachem, E., Digonnet, H., Massoni, E., Coupez, T.: Immersed volume method for solving natural convection, conduction and radiation of a hat-shaped disk inside a 3d enclosure. Int. J. Numer. Methods Heat Fluid Flow 22, 718–741 (2012)

    Article  Google Scholar 

  5. Hachem, E., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element solution to handle complex heat and fluid flows in industrial furnace using the immersed volume method. Int. J. Numer. Methods Fluids 68, 99–121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hachem, E., Feghali, S., Codina, R., Coupez, T.: Anisotropic adaptive meshing and monolithic variational multiscale method for fluid-structure interaction. Comput. Struct. 122, 88–100 (2013)

    Article  Google Scholar 

  7. Hachem, E., Feghali, S., Codina, R., Coupez, T.: Immersed stress method for fluid structure interaction. Int. J. Numer. Methods Eng. 94, 805–825 (2013)

    Article  MathSciNet  Google Scholar 

  8. Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhat, C., Rallu, A., Wang, K., Belytschko, T.: Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integratorsfor highly nonlinear fluid-structure interaction problems. Int. J. Numer. Methods Eng. 84(1), 73–107 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farhat, C., Maute, K., Argrow, B., Nikbay, M.: Shape optimization methodology for reducing the sonic boom initial pressure rise. AIAA J. Aircraft 45, 1007–1018 (2007)

    Article  Google Scholar 

  11. Piegl, L., Rajab, K., Smarodzinava, V., Valavanis, K.: Point-distance computations: a knowledge-guided approach. Comput. Aid. Des. Appl. 5(6), 855–866 (2008)

    Google Scholar 

  12. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin Heidelberg (1996)

    Google Scholar 

  13. Coupez, T.: Metric construction by length distribution tensor and edge based error for anisotropic adaptive mesing. J. Comput. Phys. 230, 2391–2405 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coupez, T., Hachem, E.: Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing. Comput. Methods Appl. Mech. Eng. 267, 65–85 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coupez, T., Jannoun, G., Nassif, N., Nguyen, H., Digonnet, H., Hachem, E.: Adaptive time-step with anisotropic meshing for incompressible flows. J. Comput. Phys. 241, 195–211 (2013)

    Article  Google Scholar 

  16. De Casteljau, P.: Outillages methodes calcul. Tech. rep., A. Citro n, Paris (1959)

    Google Scholar 

  17. Bezier, P.: Definition numerique des courbes et surfaces I. Automatisme XI, 625–632 (1966)

    Google Scholar 

  18. Cox, M.: The numerical evaluation of B-splines. Tech. rep., National Physics Laboratory DNAC4 (1971)

    Google Scholar 

  19. De Boor, C.: On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MATH  Google Scholar 

  20. Schneider, P., Eberly, D.: Geometric Tools for Computer Graphics. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  21. Selimovic, I.: Improved algorithms for the projection of points on NURBS curves and surfaces. Comput. Aid. Geom. Des. 23, 439–445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ma, Y., Hewitt, W.: Point inversion and projection for NURBS curve and surface: control polygon approach. Comput. Aid. Geom. Des. 20, 79–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dyllong, E., Luther, W.: Distance calculation between a point and a NURBS surface. In: Curve and Surface Design. Saint-Malo, pp. 55–62 (1999)

    Google Scholar 

  24. Cohen, E., Johnson, D.: Distance extrema for spline models using tangent cones. In: Proceedings of the Graphics Interface 2005 Conference, Victoria, pp. 169–175, 9–11 May 2005

    Google Scholar 

  25. Chen, X.: Improved algebraic algorithm on point projection for Bezier curves. In: Second International Multisymposium on Computer and Computational Sciences, pp. 158–169 (2007)

    Google Scholar 

  26. Coupez, T.: A mesh improvement method for 3D automatic remeshing. In: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, pp. 615–626. Pineridge Press, Swansea (1994)

    Google Scholar 

  27. Gruau, C., Coupez, T.: 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Eng. 194, 4951–4976 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of the Agence Nationale de la Recherche Scientifique (ANR), France, under the project ANR-10-REALISTIC-0065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Hachem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veysset, J., Jannoun, G., Coupez, T., Hachem, E. (2015). Immersed NURBS for CFD Applications. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_7

Download citation

Publish with us

Policies and ethics