Skip to main content

Equilibrium and Out-of-Equilibrium Dynamics in Confined Polymers and Other Glass Forming Systems by Dielectric Spectroscopy and Calorimetric Techniques

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Glassy dynamics under nanoscale confinement is currently a topic under intense debate in soft matter physics. The reason is that this kind of studies may deliver important insight on the glassy dynamics in general. Furthermore, from a technological point of view, there exists a rising interest in the understanding of how properties are modified at the nanoscale in comparison to the corresponding bulk system. Within this context, this chapter critically discusses the experimental findings in the field. The vast majority of results concerns thin polymer films. However, other geometries of confinement, such as polymer nanocomposites and nanospheres, are considered as well. Special attention is devoted to the kind of information achieved by a specific technique. Within this context, the ability of dielectric and calorimetric techniques is highlighted. Particular attention is devoted to the determination of the different aspects of glassy dynamics in confinement, that is, the equilibrium dynamics in terms of the rate of spontaneous fluctuations as probed by experiments where a perturbation in the linear regime is applied, on the one hand, and the out-of-equilibrium dynamics in terms of thermal glass transition temperature (\(T_g\)) and the physical aging on the other. In the latter case, the application of a temperature ramp for \(T_g\) measurements and the recovery of equilibrium in physical aging imply the application of large perturbations, in particular with amplitude well beyond that of spontaneous fluctuations. It is demonstrated how, in view of numerous experimental results, the two aspects are not one-to-one related in confinement. Specifically, the reduction in \(T_g\) and the acceleration of equilibrium recovery in the aging regime does not imply a concomitant speed-up of the rate of spontaneous fluctuations, which is in several cases found to be unaltered in comparison to the bulk. Finally, a description of suitable frameworks to describe such phenomenology is presented with special attention to the free volume hole diffusion (FVHD) model. This is shown to quantitatively catch the acceleration of physical aging and the \(T_g\) depression with no need to assume any acceleration on the intrinsic molecular mobility of the glass former.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The assumption of one-dimensional confinement is obviously true is thin films. For polymer nanocomposites and nanospheres it is approximately valid if the radius of curvature of nanoparticles and nanospheres, respectively, is considerably larger than the size of free volume holes.

Abbreviations

AG theory:

Adam-Gibbs Theory

CD:

Capacitive Dilatometry

CRR:

Cooperative Rearranging Region

FVHD:

Free Volume Hole Diffusion Model

NEXAFS:

Near-Edge X-Ray Absorption Fine Structure

PALS:

Positron Annihilation Lifetime Spectroscopy

PMMA:

Poly(methyl methacrylate)

RFOT:

Random First-order Theory

SMFM:

Shear Modulation Force Microscopy

VFT:

Vogel-Fulcher-Tammann

References

  1. Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–146

    CAS  Google Scholar 

  2. Alfrey T, Goldfinger G, Mark H (1943) The apparent second-order transition point of polystyrene. J Appl Phys 14(12):700–705

    CAS  Google Scholar 

  3. Amanuel S, Gaudette AN, Sternstein SS (2008) Enthalpic relaxation of silicapolyvinyl acetate nanocomposites. J Polym Sci Pol Phys 46(24):2733–2740

    CAS  Google Scholar 

  4. Baeumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109(5):055701

    Google Scholar 

  5. Bahar I, Erman B, Kremer F, Fischer E (1992) Segmental motions of cis-polyisoprene in the bulk state–interpretation of dielectric-relaxation data. Macromolecules 25(2):816–825

    CAS  Google Scholar 

  6. Baker EA, Rittigstein P, Torkelson JM, Roth CB (2009) Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J Polym Sci Pt B-Polym Phys 47(24, SI):2509–2519

    Google Scholar 

  7. Bansal A, Yang H, Li C, Cho K, Benicewicz B, Kumar S, Schadler L (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4(9): 693–698

    Google Scholar 

  8. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, Masri DE, L’Hôte D, Ladieu F, Pierno M (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310(5755):1797–1800

    CAS  Google Scholar 

  9. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2010) Enthalpy recovery of pmma/silica nanocomposites. Macromolecules 43(18):7594–7603

    CAS  Google Scholar 

  10. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Enthalpy recovery in nanometer to micrometer thick ps films. Macromolecules 45(12):5296–5206

    CAS  Google Scholar 

  11. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Phys Rev E 86(4, Part 1): 041501

    Google Scholar 

  12. Boucher VM, Cangialosi D, Alegria A, Colmenero J (2014) Accounting for the thickness dependence of the Tg in supported PS films via the volume holes diffusion model. Thermochim Acta 575:233–237

    CAS  Google Scholar 

  13. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Gonzalez-Irun J, Liz-Marzan LM (2010) Accelerated physical aging in pmma/silica nanocomposites. Soft Matter 6(14):3306–3317

    CAS  Google Scholar 

  14. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Gonzalez-Irun J, Liz-Marzan LM (2011) Physical aging in pmma/silica nanocomposites: enthalpy and dielectric relaxation. J Non-Cryst Sol 357(2, SI): 605–609

    Google Scholar 

  15. Boucher VM, Cangialosi D, Alegría A, Colmenero J, Pastoriza-Santos I, Liz-Marzan LM (2011) Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t(g) depression. Soft Matter 7(7):3607–3620

    CAS  Google Scholar 

  16. Boucher VM, Cangialosi D, Yin H, Schoenhals A, Alegría A, Colmenero J (2012) T-g depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8(19):5119–5122

    CAS  Google Scholar 

  17. Callen H, Greene R (1952) On a theorem of irreversible thermodynamics. Phys Rev 86(5): 702–710

    Google Scholar 

  18. Cangialosi D, Alegría A, Colmenero J (2007) Route to calculate the length scale for the glass transition in polymers. Phys Rev E 76(1, 1): 011514

    Google Scholar 

  19. Cangialosi D, Alegria A, Colmenero J (2007) “Self-concentration” effects on the dynamics of a polychlorinated biphenyl diluted in 1,4-polybutadiene. J Chem Phys 126(20)

    Google Scholar 

  20. Cangialosi D, Boucher V, Alegría A, Colmenero J (2013) Direct evidence of two equilibration mechanisms in glassy polymers. Phys Rev Lett 111:095701

    Google Scholar 

  21. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2011) Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. J Chem Phys 135(1):014901

    Google Scholar 

  22. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2012) Enhanced physical aging of polymer nanocomposites: the key role of the area to volume ratio. Polymer 53(6):1362–1362

    CAS  Google Scholar 

  23. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36):8619–8630

    CAS  Google Scholar 

  24. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Volume recovery of polystyrene/silica nanocomposites. J Polym Sci Part B: Polym Phys 51(10):847–853

    CAS  Google Scholar 

  25. Cangialosi D, Schwartz G, Alegria A, Colmenero J (2005) Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. J Chem Phys 123(14)

    Google Scholar 

  26. Cangialosi D, Wübbenhorst M, Groenewold J, Mendes E, Schut H, van Veen A, Picken SJ (2004) Physical aging of polycarbonate far below the glass transition temperature: evidence for the diffusion mechanism. Phys Rev B 70:224213

    Google Scholar 

  27. Clough A, Peng D, Yang Z, Tsui OKC (2011) Glass transition temperature of polymer films that slip. Macromolecules 44(6):1649–1653

    CAS  Google Scholar 

  28. Curro JG, Lagasse RR, Simha R (1982) Diffusion model for volume recovery in glasses. Macromolecules 15(6):1621–1626

    CAS  Google Scholar 

  29. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  30. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524–1527

    CAS  Google Scholar 

  31. Ding J, Xue G, Dai Q, Cheng R (1993) Glass-transition temperature of polystyrene microparticles. Polymer 34(15):3325–3327

    CAS  Google Scholar 

  32. Donati C, Douglas J, Kob W, Plimpton S, Poole P, Glotzer S (1998) Stringlike cooperative motion in a supercooled liquid. Phys Rev Lett 80(11):2338–2341

    CAS  Google Scholar 

  33. Donth E (1982) The size of cooperatively rearranging regions at the glass-transition. J Non Cryst Sol 53(3):325–330

    CAS  Google Scholar 

  34. Donth E, Korus J, Hempel E, Beiner M (1997) Comparison of dsc heating rate and hcs frequency at the glass transition. Thermochim Acta 305(6):239–239

    Google Scholar 

  35. Efremov M, Olson E, Zhang M, Zhang Z, Allen L (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett 91(8):085703

    Google Scholar 

  36. Efremov MY, Olson EA, Zhang M, Zhang ZS, Allen LH (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37(12):4607–4616

    CAS  Google Scholar 

  37. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2(10):695–700

    CAS  Google Scholar 

  38. Fakhraai Z, Forrest JA (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95(2):025701

    Google Scholar 

  39. Fakhraai Z, Forrest JA (2008) Measuring the surface dynamics of glassy polymers. Science 319(5863):600–604

    CAS  Google Scholar 

  40. Feng S, Li Z, Liu R, Mai B, Wu Q, Liang G, Gao H, Zhu F (2013) Glass transition of polystyrene nanospheres under different confined environments in aqueous dispersions. Soft Matter 9(18):4614–4620

    CAS  Google Scholar 

  41. Forrest J, Dalnoki-Veress K, Stevens J, Dutcher J (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77(10):2002–2005

    CAS  Google Scholar 

  42. Forrest J, DalnokiVeress K, Dutcher J (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56(5, B):5705–5716

    Google Scholar 

  43. Frieberg B, Glynos E, Sakellariou G, Green PF (2012) Physical aging of star-shaped macromolecules. ACS Macro Lett 1(5):636–640

    CAS  Google Scholar 

  44. Fryer D, Peters R, Kim E, Tomaszewski J, de Pablo J, Nealey P, White C, Wu W (2001) Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34(16):5627–5634

    CAS  Google Scholar 

  45. Fukao K, Koizumi H (2008) Glassy dynamics in thin films of polystyrene. Phys Rev E 77(2, Part 1):021503

    Google Scholar 

  46. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61(2):1743–1754

    CAS  Google Scholar 

  47. Gao S, Koh YP, Simon SL (2013) Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 46(2):562–570

    CAS  Google Scholar 

  48. Gaur U, Wunderlich B (1980) Study of microphase separation in block co-polymers of styrene and alpha-methylstyrene in the glass-transition region using quantitative thermal-analysis. Macromolecules 13(6):1618–1625

    CAS  Google Scholar 

  49. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney R (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85(11):2340–2343

    CAS  Google Scholar 

  50. de Gennes P (2000) Glass transitions in thin polymer films. Eur Phys J E 2(3):201–203

    Google Scholar 

  51. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106(12):128301

    Google Scholar 

  52. Grohens Y, Brogly M, Labbe C, David MO, Schultz J (1998) Glass transition of stereoregular poly(methyl methacrylate) at interfaces. Langmuir 14(11):2929–2932

    CAS  Google Scholar 

  53. Guo Y, Zhang C, Lai C, Priestley RD, D’Acunzi M, Fytas G (2011) Structural relaxation of polymer nanospheres under soft and hard confinement: isobaric versus isochoric conditions. ACS Nano 5(7):5365–5373

    CAS  Google Scholar 

  54. Hartmann L, Gorbatschow W, Hauwede J, Kremer F (2002) Molecular dynamics in thin films of isotactic poly(methyl methacrylate). Eur Phys J E 8(2):145–154

    CAS  Google Scholar 

  55. Hecksher T, Olsen NB, Niss K, Dyre JC (2010) Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J Chem Phys 133(17):174514

    Google Scholar 

  56. Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000) Characteristic length of dynamic glass transition near t-g for a wide assortment of glass-forming substances. J Phys Chem B 104(11):2460–2466

    CAS  Google Scholar 

  57. Hutchinson JM (1995) Physical aging of polymers. Prog Pol Sci 20(4):703–760

    CAS  Google Scholar 

  58. Huth H, Minakov AA, Schick C (2006) Differential ac-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci Pt B-Polym Phys 44(20):2996–3005

    CAS  Google Scholar 

  59. Inoue R, Kanaya T, Nishida K, Tsukushi I, Telling MTF, Gabrys BJ, Tyagi M, Soles C, Wu WI (2009) Glass transition and molecular mobility in polymer thin films. Phys Rev E 80(3):031802

    CAS  Google Scholar 

  60. Jackson CL, McKenna GB (1991) The glass-transition of organic liquids confined to small pores. J Non-Cryst Sol 131(Part 1):221–224

    Google Scholar 

  61. Kawana S, Jones RAL (2003) Effect of physical ageing in thin glassy polymer films. Eur Phys J E 10(3):223–230

    CAS  Google Scholar 

  62. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass-transition temperature in polymer-films. Europhys Lett 27(1):59–64

    CAS  Google Scholar 

  63. Kim JH, Jang J, Zin WC (2000) Estimation of the thickness dependence of the glass transition temperature in various thin polymer films. Langmuir 16(9):4064–4067

    CAS  Google Scholar 

  64. Koh YP, McKenna GB, Simon SL (2006) Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci Pt B-Polym Phys 44(24):3518–3527

    CAS  Google Scholar 

  65. Koh YP, Simon SL (2008) Structural relaxation of stacked ultrathin polystyrene films. J Polym Sci Pt B-Polym Phys 46(24):2741–2753

    CAS  Google Scholar 

  66. Kovacs AJ (1963) Glass transition in amorphous polymers: a phenomenological study. Fortsch Hochpolym Fo 3(1/2):394–508

    Google Scholar 

  67. Labahn D, Mix R, Schoenhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79(1, Part 1):011801

    Google Scholar 

  68. Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31(15):4970–4974

    CAS  Google Scholar 

  69. Lipson JEG, Milner ST (2009) Percolation model of interfacial effects in polymeric glasses. Eur Phys J B 72(1):133–137

    CAS  Google Scholar 

  70. Lipson JEG, Milner ST (2010) Local and average glass transitions in polymer thin films. Macromolecules 43

    Google Scholar 

  71. Liu AYH, Rottler J (2009) Physical aging and structural relaxation in polymer nanocomposites. J Polym Sci Pt B-Polym Phys 47(18):1789–1798

    CAS  Google Scholar 

  72. Liu Y, Russell T, Samant M, Stohr J, Brown H, Cossy-Favre A, Diaz J (1997) Surface relaxations in polymers. Macromolecules 30(25):7768–7771

    CAS  Google Scholar 

  73. Lodge T, McLeish T (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14):5278–5284

    CAS  Google Scholar 

  74. Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur Phys J E 4(3):371–387

    CAS  Google Scholar 

  75. Lu H, Nutt S (2003) Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36(11):4010–4016

    CAS  Google Scholar 

  76. Lubchenko V, Wolynes PG (2007) Theory of structural glasses and supercooled liquids. Annu Rev Phys Chem 58:235–266

    CAS  Google Scholar 

  77. Lupascu V, Huth H, Schick C, Wubbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta 432(2):222–228

    CAS  Google Scholar 

  78. Lupascu V, Picken SJ, Wubbenhorst M (2006) Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J Non-Cryst Solids 352(52–54):5594–5600

    CAS  Google Scholar 

  79. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9(44):10592–10598

    CAS  Google Scholar 

  80. Martinez-Tong DE, Soccio M, Sanz A, Garcia C, Ezquerra TA, Nogales A (2013) Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3d-confinement. Macromolecules 46(11):4698–4705

    CAS  Google Scholar 

  81. McCaig MS, Paul DR (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2):629–637

    CAS  Google Scholar 

  82. McCaig MS, Paul DR, Barlow JW (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2):639–648

    CAS  Google Scholar 

  83. Ming W, Zhao J, Lu X, Wang C, Fu S (1996) Novel characteristics of polystyrene microspheres prepared by microemulsion polymerization. Macromolecules 29(24):7678–7682

    CAS  Google Scholar 

  84. Miyazaki T, Inoue R, Nishida K, Kanaya T (2007) X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur Phys J Spec Top 141:203–206

    Google Scholar 

  85. Murphy TM, Langhe DS, Ponting M, Baer E, Freeman BD, Paul DR (2011) Physical aging of layered glassy polymer films via gas permeability tracking. Polymer 52(26):6117–6125

    CAS  Google Scholar 

  86. Napolitano S, Cangialosi D (2013) Interfacial free volume and vitrification: reduction in \(T_{g}\) in proximity of an adsorbing interface explained by the free volume holes diffusion model. Macromolecules 46(19):8051–8053

    CAS  Google Scholar 

  87. Napolitano S, Rotella C, Wübbenhorst M (2012) Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? ACS Macro Lett 1(10):1189–1193

    CAS  Google Scholar 

  88. Napolitano S, Rotella C, Wuebbenhorst M (2011) Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol Rapid Commun 32(11):844–848

    CAS  Google Scholar 

  89. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260

    Google Scholar 

  90. Napolitano S, Wuebbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51(23):5309–5312

    CAS  Google Scholar 

  91. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113

    CAS  Google Scholar 

  92. O’Connell P, McKenna G (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307(5716):1760–1763

    Google Scholar 

  93. Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133(22):8444–8447

    CAS  Google Scholar 

  94. Perlich J, Koerstgens V, Metwalli E, Schulz L, Georgii R, Mueller-Buschbaum P (2009) Solvent content in thin spin-coated polystyrene homopolymer films. Macromolecules 42(1): 337–344

    Google Scholar 

  95. Pfromm PH, Koros WJ (1995) Accelerated physical aging of thin glassy polymer-films–evidence from gas-transport measurements. Polymer 36(12):2379–2387

    CAS  Google Scholar 

  96. Priestley RD (2009) Physical aging of confined glasses. Soft Matter 5(5):919–926

    CAS  Google Scholar 

  97. Priestley RD, Broadbelt LJ, Torkelson JM (2005) Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. Macromolecules 38(3):654–657

    CAS  Google Scholar 

  98. Priestley RD, Broadbelt LJ, Torkelson JM, Fukao K (2007) Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene. Phys Rev E 75(6, 1):061806

    Google Scholar 

  99. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309(5733):456–459

    CAS  Google Scholar 

  100. Priestley RD, Rittigstein P, Broadbelt LJ, Fukao K, Torkelson JM (2007) Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites. J Phys Condens Matt 19(20):2996–3005

    Google Scholar 

  101. Pye JE, Rohald KA, Baker EA, Roth CB (2010) Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43(19):8296–8303

    CAS  Google Scholar 

  102. Pye JE, Roth CB (2011) Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys Rev Lett 107(23):235701

    Google Scholar 

  103. Pye JE, Roth CB (2013) Physical aging of polymer films quenched and measured free-standing via ellipsometry: controlling stress imparted by thermal expansion mismatch between film and support. Macromolecules 46(23):9455–9463

    CAS  Google Scholar 

  104. Rauscher PM, Pye JE, Baglay RR, Roth CB (2013) Effect of adjacent rubbery layers on the physical aging of glassy polymers. Macromolecules 46:9806–9817

    Google Scholar 

  105. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278–282

    CAS  Google Scholar 

  106. Rotella C, Wubbenhorst M, Napolitano S (2011) Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7(11):5260–5266

    CAS  Google Scholar 

  107. Roth C, Dutcher J (2003) Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur Phys J E 12(1):103–107

    Google Scholar 

  108. Rowe BW, Freeman BD, Paul DR (2009) Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 50(23):5565–5565

    CAS  Google Scholar 

  109. Rowe BW, Pas SJ, Hill AJ, Suzuki R, Freeman BD, Paul DR (2009) A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films. Polymer 50(25):6149–6156

    CAS  Google Scholar 

  110. Schmelzer JWP, Gutzow IS, Mazurin OV, Priven AI, Todorova SV, Petrov BP (2011) Glasses and the glass transition. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  111. See Y, Cha J, Chang T, Ree M (2000) Glass transition temperature of poly(tert-butyl methacrylate) langmuir-blodgett film and spin-coated film by x-ray reflectivity and ellipsometry. Langmuir 16(5):2351–2355

    CAS  Google Scholar 

  112. Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41(10):3636–3639

    CAS  Google Scholar 

  113. Serghei A, Kremer F (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys 209(8):810–817

    CAS  Google Scholar 

  114. Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91:235701

    CAS  Google Scholar 

  115. Soles C, Douglas J, Wu W, Peng H, Gidley D (2004) Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37(8):2890–2800

    CAS  Google Scholar 

  116. Svanberg C (2007) Glass transition relaxations in thin suspended polymer films. Macromolecules 40(2):312–315

    CAS  Google Scholar 

  117. Tanaka Y, Yamamoto T (2012) Enthalpy relaxation of comb-like polymer analysed by combining activation energy spectrum and tnm models. J Non-Cryst Solids 358(14):1687–1698

    CAS  Google Scholar 

  118. Thornton AW, Hill AJ (2010) Vacancy diffusion with time-dependent length scale: an insightful new model for physical aging in polymers. Ind Eng Chem Res 49(23):12119–12124

    CAS  Google Scholar 

  119. Thornton AW, Nairn KM, Hill AJ, Hill JM, Huang Y (2009) New relation between diffusion and free volume: ii. predicting vacancy diffusion. J Membr Sci 338(1–2):38–42

    Google Scholar 

  120. Thurau CT, Ediger MD (2003) Change in the temperature dependence of segmental dynamics in deeply supercooled polycarbonate. J Chem Phys 118(4):1996–2004

    CAS  Google Scholar 

  121. Tress M, Erber M, Mapesa EU, Huth H, Mueller J, Serghei A, Schick C, Eichhorn KJ, Volt B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43(23):9937–9944

    CAS  Google Scholar 

  122. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341(6152):1371–1374

    CAS  Google Scholar 

  123. Tsui O, Russell T, Hawker C (2001) Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34(16):5535–5539

    CAS  Google Scholar 

  124. Wallace W, Vanzanten J, Wu W (1995) Influence of an impenetrable interface on a polymer glass-transition temperature. Phys Rev E 52(4, A):R3329–R3332

    Google Scholar 

  125. Wang L, Velikov V, Angell C (2002) Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117(22):10184–1019

    CAS  Google Scholar 

  126. Wang X, Zhou W (2002) Glass transition of microtome-sliced thin films. Macromolecules 35(18):6747–6750

    CAS  Google Scholar 

  127. White RP, Lipson JEG (2011) Thermodynamic treatment of polymer thin-film glasses. Phs Rev E 84(4, 1):041801

    Google Scholar 

  128. Yin H, Cangialosi D, Schoenhals A (2013) Glass transition and segmental dynamics in thin supported polystyrene films: the role of molecular weight and annealing. Thermochim Acta 566:186–192

    CAS  Google Scholar 

  129. Yin H, Napolitano S, Schoenhals A (2012) Molecular mobility and glass transition of thin films of poly(bisphenol a carbonate). Macromolecules 45(3):1652–1652

    CAS  Google Scholar 

  130. Yin H, Schoenhals A (2013) Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films. Polymer 54(8, SI):2067–2070

    Google Scholar 

  131. Zhang C, Boucher VM, Cangialosi D, Priestley RD (2013) Mobility and glass transition temperature of polymer nanospheres. Polymer 54(1):230–235

    CAS  Google Scholar 

  132. Zhang C, Guo Y, Priestley RD (2011) Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44(10):4001–4006

    CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the University of the Basque Country and Basque Country Government (Ref. No. IT-654-13 (GV)), Depto. Educación, Universidades e investigación; and Spanish Government (Grant No. MAT2012-31088) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cangialosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cangialosi, D. (2014). Equilibrium and Out-of-Equilibrium Dynamics in Confined Polymers and Other Glass Forming Systems by Dielectric Spectroscopy and Calorimetric Techniques. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_13

Download citation

Publish with us

Policies and ethics