Skip to main content

Physiological Responses of N2-Fixing Legumes to Water Limitation

  • Chapter
Legume Nitrogen Fixation in a Changing Environment

Abstract

A significant decline in the content of water in soils provokes a water deficit at the plant level. In plant physiology, water deficit can be defined as the water content of a tissue or cell below the highest water content under the optimum hydrated state. The basis of the fundamental mechanism involved in stress tolerance, although intensively explored, is still matter of debate. Cell growth is the physiological process first affected as cell water content decreases when plants encounter mild water-deficit levels, followed by an inhibition of cell wall and protein biosynthesis. Although stomatal conductance and photosynthesis are affected in more intense water-deficit stages, most research efforts have focused on the study of these processes. In legume plants grown under symbiotic conditions, one of the primary effects of water deficit is a decline in the rates of symbiotic nitrogen fixation (SNF). The causes of this inhibition, which occurs even before a measurable decline in the rates of photosynthesis, have been explored in detail in the last decades, although the molecular mechanism involved are yet not fully understood. In the present chapter, we summarize our current understanding of the factors involved in the regulation of SNF in different legume species, including crops such as soybean (Glycine max), alfalfa (Medicago sativa), bean (Phaseolus vulgaris), and pea (Pisum sativum) but also model legumes like Medicago truncatula. Finally, an overview of the available resources and applications of molecular system-based approaches for understanding the complex responses of legumes to drought stress is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Job D, Zivy M et al (2011) Time to articulate a vision for the future of plant proteomics. A global perspective: an initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 11:1559–1568

    CAS  PubMed  Google Scholar 

  • Alamillo JM, Díaz-Leal LJ, Sánchez-Moran V et al (2010) Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Environ 33:1828–1837

    CAS  PubMed  Google Scholar 

  • Antolín MC, Muro I, Sanchez-Diaz M (2010) Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ Exp Bot 68:75–82

    Google Scholar 

  • Antolín MC, Yoller J, Sanchez-Diaz M (1995) Effects of temporary drought on nitrate-fed and nitrogen-fixing alfalfa plants. Plant Sci 107:159–165

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68:594–596

    PubMed Central  CAS  PubMed  Google Scholar 

  • Athar M (1998) Drought tolerance by lentil rhizobia (Rhizobium leguminosarum) from arid and semiarids areas of Pakistan. Lett Appl Microbiol 26:38–42

    Google Scholar 

  • Athar M, Johnson DA (1997) Effect of drought on the growth and survival of Rhizobium meliloti strains from Pakistan and Nepal. J Arid Environ 35:335–340

    Google Scholar 

  • Bacanamwo M, Harper JE (1997) The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism. Physiol Plant 100:371–377

    CAS  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN et al (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashor CJ, Dalton DA (1999) Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules. New Phytol 142:19–26

    CAS  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M et al (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    CAS  PubMed  Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Google Scholar 

  • Benedito VA, Torres-Jerez I, Murray J et al (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513

    CAS  PubMed  Google Scholar 

  • Bergersen FJ (1982) Root nodules of legumes: structure and functions. Research Studies Press/Wiley, Chichester, UK

    Google Scholar 

  • Boonkerd N, Weaver RW (1982) Survival of cowpea rhizobia in soil as affected by soil temperature and moisture. Appl Environ Microbiol 43:585–589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boscari A, Meilhoc E, Castella C (2013) Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? Front Plant Sci 4:384

    PubMed Central  PubMed  Google Scholar 

  • Brown CM, Dilworth MJ (1975) Ammonia assimilation by rhizobium cultures and bacteroids. J Gen Microbiol 86:39–48

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Burris RH (1991) Nitrogenases. J Biol Chem 266:9339–9342

    CAS  PubMed  Google Scholar 

  • Busse MD, Bottomley PJ (1989) Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and non-permeating solutes. Appl Environ Microbiol 55:2431–2436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cam Y, Pierre O, Boncompani E (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196:548–560

    CAS  PubMed  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 103:14959–14964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho H, Lescure N, de Billy F et al (2000) Cellular expression and regulation of the Medicago truncatula cytosolic glutamine synthetase genes in root nodules. Plant Mol Biol 42:741–756

    CAS  PubMed  Google Scholar 

  • Chang C, Damiani I, Puppo A et al (2009) Redox changes during the legume-rhizobium symbiosis. Mol Plant 2:370–377

    CAS  PubMed  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    CAS  PubMed  Google Scholar 

  • Chen P, Sneeller CH, Purcell LC et al (2007) Registration of soybean germplasm lines R01–416F and R01–581F for improved yield and nitrogen fixation under drought stress. J Plant Reg 1:166–167

    Google Scholar 

  • Clement M, Lambert A, Heroulart D et al (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    CAS  PubMed  Google Scholar 

  • Coba de la Pena T, Redondo FJ, Manrique E et al (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965

    CAS  PubMed  Google Scholar 

  • Collier R, Tegeder M (2012) Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72:355–367

    CAS  PubMed  Google Scholar 

  • Cordoba E, Shishkova S, Vance CP et al (2003) Antisense inhibition of NADH-glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L). Plant J 33:1037–1049

    CAS  PubMed  Google Scholar 

  • Craig J, Barratt P, Tatge H et al (1999) Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J 17:353–362

    CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Google Scholar 

  • Cullimore JV, Bennett MJ (1988) The molecular biology and biochemistry of plant glutamine synthetase from root nodules of Phaseolus vulgaris and other legumes. J Plant Physiol 132:387–393

    CAS  Google Scholar 

  • Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd Edn. Cambridge University Press, New York, NY

    Google Scholar 

  • Danso SKA, Alexander M (1974) Survival of two strains of Rhizobium. Soil Sci Soc Am Proc 38:86–89

    Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez Barroso S et al (2009) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29:185–201

    CAS  Google Scholar 

  • De Lorenzo CP, Iannetta PPM, Fernández-Pascual M et al (1993) Oxygen diffusion in lupin nodules. Mechanisms of diffusion barrier operation. J Exp Bot 44:1469–1474

    Google Scholar 

  • Del Castillo LD, Hunt S, Layzell DB (1994) The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106:949–955

    PubMed Central  PubMed  Google Scholar 

  • Del Castillo LD, Layzell DB (1995) Drought stress, permeability to O2 diffusion, and the respiratory kinetics of soybean root nodules. Plant Physiol 107:1187–1194

    PubMed Central  PubMed  Google Scholar 

  • Denison RF (1998) Decreased oxygen permeability: a universal stress response in legume root nodules. Bot Acta 111:191–192

    CAS  Google Scholar 

  • Deshmukh R, Sonah H, Patil G et al (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 3:244

    Google Scholar 

  • deSilva M, Purcell LC, King CA (1996) Soybean petiole ureide response to water deficits and decreased transpiration. Crop Sci 36:611–616

    Google Scholar 

  • Devi MJ, Rowland DL, Payton P et al (2013) Nitrogen fixation tolerance to soil water deficit among commercial cultivars and breeding lines of peanut. Field Crop Res 149:127–132

    Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V (2010) Genotypic variability among peanut (Arachis hypogea L.) in sensitivity of nitrogen fixation to soil drying. Plant Soil 330:139–148

    CAS  Google Scholar 

  • Devisser R, Poorter H (1984) Growth and root nodule nitrogenase activity of Pisum sativum as influenced by transpiration. Physiol Plant 61:637–642

    CAS  Google Scholar 

  • Díaz-Leal JL, Galvez-Valdivieso G, Fernandez J et al (2012) Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L. J Exp Bot 63:4095–4106

    PubMed  Google Scholar 

  • Díaz-Leal JL, Torralbo F, Quiles FA et al (2014) Molecular and functional characterization of allantoate amidohydrolase from Phaseolus vulgaris. Physiol Plant 152:43–58

    PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    CAS  PubMed  Google Scholar 

  • Durand JL, Sheehy JE, Minchin FR (1987) Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water-deprivation. J Exp Bot 38:311–321

    CAS  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    CAS  PubMed  Google Scholar 

  • Edgerton SA, MacCracken MC, Jacobson MZ et al (2008) Prospects for future climate change and the reasons for early action. J Air Waste Manag Assoc 58:1386–1400

    CAS  PubMed  Google Scholar 

  • El Msehli S, Lambert A, Baldacci-Cresp F et al (2011) Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol 192:496–506

    PubMed  Google Scholar 

  • El-Beltagy AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol 73:47–60

    CAS  Google Scholar 

  • Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10:1–15

    Google Scholar 

  • Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356–362

    CAS  PubMed  Google Scholar 

  • Estévez AJ, Fernández-Córdoba F, Soria Diaz ME et al (2009) Different and new Nod factors produced by Rhizobium tropici CIAT899 following Na+ stress. FEMS Microbiol Lett 293:220–231

    PubMed  Google Scholar 

  • FAOSTAT (2013) FAO statistical yearbook. World food and agriculture. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Farrington JA, Ebert M, Land EJ et al (1973) Bipyridylium quaternary-salts and related compounds. 5. Pulse-radiolysis studies of reaction of paraquat radical with oxygen - implications for mode of action of bipyridyl herbicides. Biochim Biophys Acta 314:372–381

    CAS  PubMed  Google Scholar 

  • Fatokun CA, Boukar O, Muranaka S (2012) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet Resour Charact Util 10:171–176

    Google Scholar 

  • Fougere F, Lerudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L). Plant Physiol 96:1228–1236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frechilla S, González EM, Royuela M et al (2000) Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. J Plant Physiol 157:609–617

    CAS  Google Scholar 

  • Frechilla S, Lasa B, Ibarretxe L et al (2001) Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179

    CAS  Google Scholar 

  • Gálvez L, González EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    PubMed  Google Scholar 

  • Gao JJ, Agrawal GK, Thelen JJ et al (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37(Database issue):D960–D962

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gehlot HS, Panwarn D, Tak N et al (2012) Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant Soil 357:227–243

    CAS  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Arrese-Igor C et al (2013a) Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula? J Exp Bot 64:281–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Seminario A et al (2013b) Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot 64:2171–2182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Vaughn M, McKay S et al (2011) The iPlant collaborative: cyber infrastructure for plant biology. Front Plant Sci 2:34

    PubMed Central  PubMed  Google Scholar 

  • Gogorcena Y, Iturbeormaetxe I, Escuredo PR et al (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water-stress. Plant Physiol 108:753–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A et al (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res 33(Database issue):D660–D665

    PubMed Central  CAS  PubMed  Google Scholar 

  • González EM, Aparicio-Tejo PM, Gordon AJ et al (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49:1705–1714

    Google Scholar 

  • González EM, Gordon AJ, James CL et al (1995) The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46:1515–1523

    Google Scholar 

  • González EM, Gálvez L, Royuela M et al (2001) Insights into the regulation of nitrogen fixation in pea nodules: lessons from water deficits, abscisic acid and increased photoassimilate availability. Agronomie 21:607–613

    Google Scholar 

  • Gordon AJ, Minchin FR, James CL et al (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon AJ, Minchin FR, Skot L et al (1997) Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol 114:937–946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grimsrud PA, den Os D, Wenger CD et al (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerin V, Trinchant JC, Rigaud J (1990) Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) nodules and bacteroids under water-restricted conditions. Plant Physiol 92:595–601

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrouj K, Pérez-Valera E, Chahboune R et al (2013) Identification of the rhizobial symbiont of Astragalus glombiformis in Eastern Morocco as Mesorhizobium camelthorni. Antonie Van Leeuwenhoek 104:187–198

    CAS  PubMed  Google Scholar 

  • Hartwig UA, Heim I, Luscher A et al (1994) The nitrogen-sink is involved in the regulation of nitrogenase activity in white clover after defoliation. Physiol Plant 92:375–382

    CAS  Google Scholar 

  • Hartwig UA, Trommler J (2001) Increase in the concentrations of amino acids in the vascular tissue of white clover and white lupin after defoliation: an indication of a N feedback regulation of symbiotic N2 fixation. Agronomie 21:615–620

    Google Scholar 

  • He J, Benedito VA, Wang M et al (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10:441

    PubMed Central  PubMed  Google Scholar 

  • Herring SC, Hoerling MP, Peterson TC, Stott PA, eds. (2014) Explaining extreme events of 2013 from a climate perspective. Bull Amer Meteor Soc 95: S1–S96

    Google Scholar 

  • Horchani F, Prévot M, Boscari A et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR et al (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hummel J, Niemann M, Wienkoop S et al (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8:216

    PubMed Central  PubMed  Google Scholar 

  • Hunt PG, Wollum AG, Matheny TA (1981) Effects of soil water on Rhizobium japonicum infection nitrogen accumulation and yield in bragg soybeans. Agron J 73:501–505

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF et al. (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change Field. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Irar S, González EM, Arrese-Igor C et al (2014) A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. Physiol Plant 15(4):634–645

    Google Scholar 

  • James EK, Sprent JI, Minchin FR et al (1991) Intercellular location of glycoprotein in soybean nodules – effect of altered rhizosphere oxygen concentration. Plant Cell Environ 14:467–476

    CAS  Google Scholar 

  • Jeuffroy MH, Ney B (1997) Crop physiology and productivity. Field Crops Res 53:3–16

    Google Scholar 

  • Jones AM, Aebersold R, Ahrens CH et al (2012) The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics 12:340–345

    PubMed  Google Scholar 

  • Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155:259–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaschuk G, Hungria M, Leffelaar PA et al (2010) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol 12:60–69

    CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Biol 44:283–307

    CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    CAS  PubMed  Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirova E, Tzvetkova N, Vaseva I et al (2008) Photosynthetic responses of nitrate-fed and nitrogen-fixing soybeans to progressive water stress. J Plant Nutr 31:445–458

    CAS  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    CAS  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E et al (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larrainzar E, Gil-Quintana E, Arrese-Igor C et al (2014a) Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned? J Integr Plant Biol 56:1118–1124

    CAS  PubMed  Google Scholar 

  • Larrainzar E, Molenaar JA, Wienkoop S et al (2014b) Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ 37:2051–2063

    CAS  PubMed  Google Scholar 

  • Larrainzar E, Wienkoop S, Scherling C et al (2009) Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol Plant Microbe Interact 22:1565–1576

    CAS  PubMed  Google Scholar 

  • Larrainzar E, Wienkoop S, Weckwerth W et al (2007) Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol 144:1495–1507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Dai X, Liu T et al (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 40(Database issue):D1221–D1229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Limpens J, Granath G, Aerts R et al (2012) Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytol 195:408–418

    CAS  PubMed  Google Scholar 

  • Lodeiro AR, Gonzalez P, Hernandez A et al (2000) Comparison of drought tolerance in nitrogen-fixing and inorganic nitrogen-grown common beans. Plant Sci 154:31–41

    CAS  PubMed  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726

    CAS  PubMed  Google Scholar 

  • MacCracken MC (2008) Prospects for future climate change and the reasons for early action. J Air Waste Manag Assoc 58:735–786

    CAS  PubMed  Google Scholar 

  • Maliva R, Missimer T (2012) Arid lands water evaluation and management, Environmental science and engineering. Springer, Heidelberg

    Google Scholar 

  • Marino D, Andrio E, Danchin EGJ et al (2011) A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol 189:580–592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marino D, Damiani I, Gucciardo S et al (2013) Inhibition of nitrogen fixation in symbiotic Medicago truncatula upon Cd exposure is a local process involving leghemoglobin. J Exp Bot 64:5651–5660

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A et al (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    CAS  PubMed  Google Scholar 

  • Marino D, Frendo P, Ladrera R et al (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143:1968–1974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marino D, González EM, Arrese-Igor C (2006) Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. J Exp Bot 57:665–673

    CAS  PubMed  Google Scholar 

  • Marino D, Hohnjec N, Kuster H et al (2008) Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. Mol Plant-Microbe Interact 21:622–630

    CAS  PubMed  Google Scholar 

  • Marino D, Pucciariello C, Puppo A et al (2009) The redox state, a referee of the Legume-Rhizobia symbiotic game. In: Jacquot JP (ed) Advances in botanical research: oxidative stress and redox regulation in plants. Amsterdam: Elsevier 52:115–151

    Google Scholar 

  • McGrath RB, Coruzzi GM (1991) A gene network controlling glutamine and asparagine biosynthesis in plants. Plant J 1:275–280

    CAS  PubMed  Google Scholar 

  • Miao Z, Li D, Zhang Z et al (2012) Medicago truncatula transporter database: a comprehensive database resource for M. truncatula transporters. BMC Genomics 13:60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller MS, Pepper IL (1988) Survival of a fast-growing strain of lupin rhizobia in Sonoran Desert soils. Soil Biol Biochem 20:323–327

    Google Scholar 

  • Minchin FR, James EK, Becana M (2008) Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht

    Google Scholar 

  • Minchin FR, Pate JS (1974) Diurnal functioning of legume root nodule. J Exp Bot 25:295–308

    CAS  Google Scholar 

  • Mnasri B, Elarbi M, Aouani E et al (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Boil Biochem 39:1744–1750

    CAS  Google Scholar 

  • Molina C, Rotter B, Horres R et al (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    PubMed Central  PubMed  Google Scholar 

  • Morgan PW, He C-J, De Greef JA et al (1990) Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol 94:1616–1624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nandwal AS, Bharti S, Sheoran IS et al (1991) Drought effects on carbon exchange and nitrogen-fixation in pigeon pea (Cajanus cajan L). J Plant Physiol 138:125–127

    CAS  Google Scholar 

  • Narayana I, Lalonde S, Saini HS (1991) Water-stress-induced ethylene production in wheat: a fact or artifact? Plant Physiol 96:406–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nasr Esfahani M, Sulieman S, Schulze J et al (2014) Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J 79:964–980

    CAS  PubMed  Google Scholar 

  • Navascues J, Pérez-Rontomé C, Gay M et al (2011) Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci U S A 109:2660–2665

    Google Scholar 

  • Naya L, Ladrera R, Ramos J et al (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neo HH, Layzell DB (1997) Phloem glutamine and the regulation of O2 diffusion in legume nodules. Plant Physiol 113:259–267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oger E, Marino D, Guigonis JM et al (2012) Sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis. J Proteomics 75:4102–4113

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    CAS  PubMed  Google Scholar 

  • Orchard VA, Cook FG (1983) Relation between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Google Scholar 

  • Oti-Boateng C, Silsbury JH (1993) The effects of exogenous amino acid on acetylene reduction activity of Vicia faba L Cv Fjord. Ann Bot 71:71–74

    CAS  Google Scholar 

  • Parsons R, Stanforth A, Raven JA et al (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16:125–136

    CAS  Google Scholar 

  • Pate JS, Gunning BES, Briarty LG (1969) Ultrastructure and functioning of transport system of leguminous root nodule. Planta 85:11–34

    CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    CAS  PubMed  Google Scholar 

  • Postel SL (2000) Water and world population growth. J Am Water Works Assoc 92:131–138

    CAS  Google Scholar 

  • Postma J, Vanveen JA, Walter S (1989) Influence of different initial soil-moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 21:437–442

    Google Scholar 

  • Prell J, Bourdes A, Kumar S et al (2010) Role of symbiotic auxotrophy in the Rhizobium-Legume symbioses. PloS One 5:e13933

    PubMed Central  PubMed  Google Scholar 

  • Purcell LC, Serraj R, de Silva M et al (1998) Ureide concentration of field-grown soybean in response to drought and the relationship to nitrogen fixation. J Plant Nutr 21:949–966

    CAS  Google Scholar 

  • Ramos MLG, Gordon AJ, Minchin FR et al (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 83:57–63

    CAS  Google Scholar 

  • Ramos MLG, Parsons R, Sprent JI et al (2003) Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesq Agropec Bras 38:339–347

    Google Scholar 

  • Redman RS, Freeman S, Clifton DR et al (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823–e14823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Redondo FJ, de la Pena TC, Lucas MM et al (2012) Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress. Planta 236:1687–1700

    CAS  PubMed  Google Scholar 

  • Redondo FJ, de la Pena TC, Morcillo CN et al (2009) Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol 149:1166–1178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds PHS, Boland MJ, Farnden KJF (1981) Enzymes of nitrogen-metabolism in legume nodules – partial purification and properties of the aspartate aminotransferases from Lupin nodules. Arch Biochem Biophys 209:524–533

    CAS  PubMed  Google Scholar 

  • Rode C, Senkler M, Klodmann J et al (2011) GelMap – a novel software tool for building and presenting proteome reference maps. J Proteomics 74:2214–2219

    CAS  PubMed  Google Scholar 

  • Rosendahl L, Dilworth MJ, Glenn AR (1992) Exchange of metabolites across the peribacteroid membrane in pea root nodules. J Plant Physiol 139:635–638

    CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    CAS  PubMed  Google Scholar 

  • Ruffel S, Freixes S, Balzergue S et al (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146:2020–2035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salminen SO, Streeter JG (1992) Labeling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae bacteroids following incubation of intact nodules with 14CO2. Plant Physiol 100:597–604

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    CAS  PubMed  Google Scholar 

  • Schubert S, Serraj R, Pliesbalzer E et al (1995) Effect of drought stress on growth, sugar concentrations and amino acid accumulation in N2-fxing alfalfa (Medicago sativa). J Plant Physiol 146:541–546

    CAS  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    CAS  Google Scholar 

  • Serraj R, Roy G, Drevon JJ (1994) Salt stress induces a decrease in the oxygen-uptake of soybean nodules and in their permeability to oxygen diffusion. Physiol Plant 91:161–168

    CAS  Google Scholar 

  • Serraj R, Sinclair TR (1996) Processes contributing to N2-fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci 36:961–968

    Google Scholar 

  • Serraj R, Sinclair TR (1998) N2 fixation response to drought in common bean (Phaseolus vulgaris L.). Ann Bot 82:229–234

    Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999a) Symbiotic nitrogen fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Serraj R, Vadez V, Denison RF et al (1999b) Involvement of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Google Scholar 

  • Seversike TM, Sermons SM, Sinclair TC et al (2014) Physiological properties of a drought-resistant wild soybean genotype: transpiration control with soil drying and expression of root morphology. Plant Soil 374:359–370

    CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    CAS  PubMed  Google Scholar 

  • Silsbury JH, Catchpoole DW, Wallace W (1986) Effects of nitrate and ammonium on nitrogenase (C2H2 reduction) activity of swards of subterranean clover, Trifolium subterraneum L. Aust J Plant Physiol 13:257–273

    CAS  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7:e38554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair TR, Serraj R (1995) Legume nitrogen fixation and drought. Nature 378:344

    CAS  Google Scholar 

  • Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sprent JI (1971) The effect of water stress on nitrogen-fixing root nodules. I. Effects on the physiology of detached soybean nodules. New Phytol 70:9

    CAS  Google Scholar 

  • Sprent JI (1994) Evolution and diversity in the legume-rhizobium symbiosis: chaos theory? Plant Soil 161:1–10

    Google Scholar 

  • Staudinger C, Mehmeti V, Turetschek R et al (2012) Possible role of nutritional priming for early salt and drought stress responses in Medicago truncatula. Front Plant Sci 3:285

    Google Scholar 

  • Stouthamer AH, Kooijman S (1993) Why it pays for bacteria to delete disused DNA and to maintain megaplasmids. Antonie Van Leeuwenhoek 63(1):39–43

    CAS  PubMed  Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM et al (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140:21–31

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R et al (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Ta T, Faris MA, Macdowall FDH (1986) Pathways of nitrogen metabolism in nodules of alfalfa (Medicago sativa L.). Plant Physiol 80:1002–1005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima S, Nomura M, Kouchi H (2004) Ureide biosynthesis in legume nodules. Front Biosci 9:1374–1381

    CAS  PubMed  Google Scholar 

  • Talbi C, Sánchez C, Hidalgo-García A et al (2012) Enhanced expression of Rhizobium etli cbb3 oxidase improves drought tolerance of common bean symbiotic nitrogen fixation. J Exp Bot 63:5035–5043

    CAS  PubMed  Google Scholar 

  • Tate RL (1995) Soil microbiology. Wiley, New York, NY

    Google Scholar 

  • Trepp GB, Plank DW, Gantt JS et al (1999a) NADH-glutamate synthase in alfalfa root nodules. Immunocytochemical localization. Plant Physiol 119:829–837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trepp GB, van de Mortel M, Yoshioka H et al (1999b) NADHglutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. Plant Physiol 119:817–828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Triplett EW, Blevins DG, Randall DD (1980) Allantoic acid synthesis in soybean root nodule cytosol via xanthine dehydrogenase. Plant Physiol 65:1203–1206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vadez V, Sinclair T, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol Plant 110:215–223

    CAS  Google Scholar 

  • Vance CP, Gantt JS (1992) Control of nitrogen and carbon metabolism in root nodules. Physiol Plant 85:266–274

    CAS  Google Scholar 

  • Vance CP, Gregerson RG, Robinson DL et al (1994) Primary assimilation of nitrogen in alfalfa nodules – molecular features of the enzymes involved. Plant Sci 101:51–64

    CAS  Google Scholar 

  • Vandenbosch KA, Rodgers LR, Sherrier DJ et al (1994) A peanut nodule lectin in infected-cells and in vacuoles and the extracellular-matrix of nodule parenchyma. Plant Physiol 104:327–337

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Heerden PDR, Kiddle G, Pellny TK, Mokwala PW, Jordaan A, Strauss AJ, de Beer M, Schluter U, Kunert KJ, Foyer CH (2008) Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence. Plant Physiol 148:316–327

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK et al (2013) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6(3):1–9, www.agronomy.org/publications/tpg/pdfs/6/3/plantgenome2013.07.0022

  • Varshney RK, Hiremath PJ, Lekha P et al (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verdier J, Torres-Jerez I, Wang M et al (2013) Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. Plant J 74(2):351–362

    Google Scholar 

  • Verdoy D, Lucas MM, Manrique E et al (2004) Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant Cell Environ 27:757–767

    CAS  Google Scholar 

  • Vessey JK, Walsh KB, Layzell DB (1998) Oxygen limitation of N2 fixation in stem-girdled and nitrate-treated soybean. Physiol Plant 73:113–121

    Google Scholar 

  • Wadisirisuk P, Danso SKA, Hardarson G et al (1989) Influence of Bradyrhizobium japonicum location and movement on nodulation and nitrogen fixation in soybeans. Appl Environ Microbiol 35:1711–1716

    Google Scholar 

  • Waldon HB, Jenkins MB, Virginia RA et al (1989) Characteristics of woodland rhizobial populations from surface and deep soil environment of the Sonoran Desert. Appl Environ Microbiol 55:3058–3064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh KB (1990) Vascular transport and soybean nodule function 3. Implications of a continual phloem supply of carbon and water. Plant Cell Environ 13:893–901

    Google Scholar 

  • Walsh KB, Canny MJ, Layzell DB (1989a) Vascular transport and soybean nodule function. 2. A role for phloem supply in product export. Plant Cell Environ 12:713–723

    CAS  Google Scholar 

  • Walsh KB, McCully ME, Canny MJ (1989b) Vascular transport and soybean nodule function – nodule xylem is a blind alley, not a throughway. Plant Cell Environ 12:395–405

    Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Verdier J, Benedito VA et al (2013) LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PLoS ONE 8:e67434

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang T, Chen L, Zhao M et al (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 73:2239–2248

    CAS  PubMed  Google Scholar 

  • Wienkoop S, Staudinger C, Hoehenwarter W et al (2012) ProMEX – a mass spectral reference database for plant proteomics. Front Plant Sci 3:124

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120

    Google Scholar 

  • Witty JF, Skot L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume root-nodules to O2 diffusion. J Exp Bot 38:1129–1140

    Google Scholar 

  • Worrall VS, Roughley RJ (1976) Effect of moisture stress on infection of Trifolium Subterraneum L. by Rhizobium trifolii Dang. J Exp Bot 27:1233–1241

    Google Scholar 

  • WWAP (United Nations World Water Assessment Programme) (2014) The United Nations World Water Development Report 2014: water and energy. UNESCO, Paris

    Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    CAS  PubMed  Google Scholar 

  • Zabalza A, Gálvez L, Marino D et al (2008) The application of ascorbate or its immediate precursor, galactono-1,4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress. J Plant Physiol 165:805–812

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish National Research and Development Programs (AGL2011-23738, AGL2011-30386-C02-01, Juan de la Cierva) and Basque Government program (IT526-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther M. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González, E.M., Larrainzar, E., Marino, D., Wienkoop, S., Gil-Quintana, E., Arrese-Igor, C. (2015). Physiological Responses of N2-Fixing Legumes to Water Limitation. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-06212-9_2

Download citation

Publish with us

Policies and ethics