Skip to main content

Calibration Based on Accurate Gas Samples (Method II)

  • Chapter
  • First Online:
Accurate Calibration of Raman Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 792 Accesses

Abstract

In the previous chapter, the calibration of the Raman system was performed via theoretical intensities and the spectral sensitivity of the Raman system over a wavelength range covering all six hydrogen isotopologues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Raman signal is given by the integrated area under a certain peak.

  2. 2.

    Note that the standard symbol for the extent of reaction is \(\xi \). This symbol is also used in this publication: [10]. However, \(\xi \) has previously been utilized for the polarization cleanness in the depolarization ratio measurements. Therefore, the symbol \(r\) is used here to avoid ambiguities.

  3. 3.

    In literature it is found, that theoretical calculations of \(K(T)\) (e.g. [11]) and experimental measurement [12] agree within less than \(2\,\%\). The theoretical calculations have been redone within this work by the author using the spectroscopic constants via [13, 14]. The results deviated less than \(0.3\,\%\) from those of [11].

  4. 4.

    Note that in general the precision, i.e. reproducibility, of a measurement is not restricted by the limitations in the measurement trueness.

  5. 5.

    The volumes are \(\mathrm{{V1}}=\left( 1665\pm 9\right) \,{\mathrm{{cm}}^3}\) and \(\mathrm{{V2}}=\left( 1655\pm 8\right) \,{\mathrm{{cm}}^3}\) as determined by the method described in [18].

  6. 6.

    The pressure is measured by pressure gauges P1 and P2; \(\mathrm{{range}}=0\ldots 1000\,\mathrm{{mbar}}\); \(\mathrm{{accuracy}}=0.3\,\mathrm{{mbar}}\) (Baratron type 626AX13MBD, MKS).

  7. 7.

    In this case the Leybold-Heraeus palladium diffusion cell PA 150.

References

  1. International Organization for Standardization (2001) ISO 6142, gas analysis—preparation of calibration gas mixtures—Gravimetric method

    Google Scholar 

  2. International Organization for Standardization (2003) ISO 6145, gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods

    Google Scholar 

  3. Ohta T, Bouchigny S, Didelez J-P, Fujiwara M, Fukuda K, Kohri H, Kunimatsu T, Morisaki C, Ono S, Rouillé G, Tanaka M, Ueda K, Uraki M, Utsuro M, Wang SY, Yosoi M (2011) Hd gas analysis with gas chromatography and quadrupole mass spectrometer. Nucl Instrum Meth A 640(1):241–246

    Article  ADS  Google Scholar 

  4. Ohta T, Bouchigny S, Didelez J-P, Fujiwara M, Fukuda K, Kohri H, Kunimatsu T, Morisaki C, Ono S, Rouillé G, Tanaka M, Ueda K, Uraki M, Utsuro M, Wang SY, Yosoi M (2012) Distillation of hydrogen isotopes for polarized hd targets. Nucl Instrum Meth A 664(1):347–352

    Article  ADS  Google Scholar 

  5. Kawamura Y, Onishi Y, Okuno K, Yamanishi T (2008) Hydrogen isotope separation capability of low temperature mordenite column for gas chromatograph. Fusion Eng Des 83(10—-12):1384–1387

    Article  Google Scholar 

  6. Okuno K, Uda T, O’Hira S, Naruse Y (1991) Development of in-situ gas analyzer for hydrogen isotopes in fusion fuel gas processing. J Nucl Sci Technol 28(6):509–516

    Article  Google Scholar 

  7. Herwig P (2011) Kalibrierung des KATRIN Laser-Raman-Systems mit nicht-tritiierten Wasserstoffisotopologen. Diploma thesis, Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

  8. Seitz H (2011) Kalibrierung des KATRIN Laser-Raman-Systems mit katalytisch hergestellten, inaktiven Wasserstoffisotopologmischungen. Bachelor thesis, Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

  9. Rupp S (2012) Proof of concept of a calibration method for the laser Raman system for KATRIN based on the determination of the system’s spectral sensitivity. Diploma thesis, Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

  10. Schlösser M, Seitz H, Rupp S, Herwig P, Alecu CG, Sturm M, Bornschein B (2013) In-line calibration of raman systems for analysis of gas mixtures of hydrogen isotopologues with sub-percent accuracy. Anal Chem 85(5):2739–2745

    Article  Google Scholar 

  11. McQuarrie DA (1976) Statistical mechanics. In: Reynolds PJ (ed) Harper’s chemistry Series. Harpercollins College Div, New York

    Google Scholar 

  12. Rittenberg D, Bleakney W, Urey HC (1934) The equilibrium between the three hydrogens. J Chem Phys 2(1):4–49

    Article  Google Scholar 

  13. Veirs DK, Rosenblatt GM (1987) Raman line positions in molecular hydrogen: H\(_{2}\), HD, HT, D\(_{2}\), DT, and T\(_{2}\). J Mol Spectrosc 121:401–419

    Google Scholar 

  14. Schwartz C, Le Roy RJ (1987) Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen. J Mol Spectrosc 121:420–439

    Article  ADS  Google Scholar 

  15. Atkins PW, Paula J de (2006) Physikalische Chemie vol 4 (German Edition). Wiley, New York

    Google Scholar 

  16. BetriebsbĂĽro TLK (2013) Technische Liefer-und Abnahmebedingungen des Tritiumlabor Karlsruhe (TLA). TLK

    Google Scholar 

  17. European Parliament and Council (1997) Pressure equipment directive 97/23/EC (PED). Technical report

    Google Scholar 

  18. Köllö Z, Alecu CG, Moosmann H (2011) A new method to measure small volumes in tritium handling facilities, using p-v measurements. Fusion Sci Technol 60(3):972–975

    Google Scholar 

  19. Shu J, Grandjean BPA, Neste A Van, Kaliaguine1 S (1991) Catalytic palladium-based membrane reactors: a review. Can J Chem Eng 69(5):1036–1060

    Google Scholar 

  20. Mizuno M, Anzai H, Aoyama T, Suzuki T (1994) Determination of hydrogen concentration in austenitic stainless steels by thermal desorption spectroscopy. Mater T JIM 35(10):703–707

    Article  Google Scholar 

  21. Brun R, Rademakers F (1997) Root—an object oriented data analysis framework. Nucl Instrum Meth A 389(1–2):81–86

    Article  ADS  Google Scholar 

  22. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman and Hall/CRC, New York

    Google Scholar 

  23. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37(1):36–48

    MathSciNet  Google Scholar 

  24. Davison AC, Hinkley DV, Young GA (2003) Recent developments in bootstrap methodology. Statist Sci 18(2):141–157

    Article  MathSciNet  Google Scholar 

  25. Christmann K, Ertel G, Pignet T (1976) Adsorption of hydrogen on a Pt(111) surface. Surf Sci 54:365–392

    Google Scholar 

  26. Katsuta H, Furukawa K (1981) Hydrogen and deuterium transport through type 304 stainless steel at elevated temperatures. J Nucl Sci Technol 18(2):143–151

    Article  Google Scholar 

  27. Saxena SC, Saxena VK (1970) Thermal conductivity data for hydrogen and deuterium in the range 100–1100 degrees c. J Phys A: Gen Phys 3(3):309

    Article  ADS  Google Scholar 

  28. Borysow J, Fink M (2005) Nir raman spectrometer for monitoring protonation reactions in gaseous hydrogen. J Nucl Mat 341:224–230

    Article  ADS  Google Scholar 

  29. Glugla M, Cristescu IR, Cristescu I, Demange D (2006) Hydrogen isotope separation by permeation through palladium membranes. J Nucl Mat 355(1–3):47–53

    Article  ADS  Google Scholar 

  30. Souers PC (1986) Hydrogen properties for fusion energy. University of California Press, California

    Google Scholar 

  31. Uda T, Okuno K, Naruse Y (1992) Hydrogen isotope exchange reaction rate in tritium and methane mixed gas. J Radioanal Nucl Ch 159:145–154

    Article  Google Scholar 

  32. Gill JT (1980) Effect of container preparation on the growth of protium and methane impurities into tritium gas. J Vacuum Sci Technol 17(2):645–654

    Article  ADS  Google Scholar 

  33. Morris GA (1977) Methane formation in tritium gas exposed to stainless steel. Lawrence Livermore Laboratory, Report, UCRL-52262

    Google Scholar 

  34. Fischer S, Sturm M, Schlösser M, Bornschein B, Drexlin G, Priester F, Lewis RJ, Telle HH (2011) Monitoring of tritium purity during long-term circulation in the katrin test experiment loopino using laser raman spectroscopy. Fusion Sci Technol 60(3):925–930

    Google Scholar 

  35. Dörr L Besserer U, Glugla M, Hellriegel G, Hellriegel W, Schäfer P, Wendel J (2005) The closed tritium cycle of the tritium laboratory Karlsruhe. Fusion Sci Technol 48(1):262–267

    Google Scholar 

  36. Röllig M (2013) In preparation. Phd thesis, Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Schlösser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlösser, M. (2014). Calibration Based on Accurate Gas Samples (Method II). In: Accurate Calibration of Raman Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06221-1_6

Download citation

Publish with us

Policies and ethics