Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 798 Accesses

Abstract

In this chapter the mechanism of action of the peptide trichogin GAIV (GAIV henceforth) will be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad A, Azmi S, Srivastava RM, Srivastava S, Pandey BK, Saxena R, Bajpai VK, Ghosh JK (2009) Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Biochemistry 48:10905–10917

    CAS  Google Scholar 

  2. Albert JS, Hamilton AD (1995) Stabilization of helical domains in short peptides using hydrophobic interactions. Biochemistry 34:984–990

    CAS  Google Scholar 

  3. Andreu D, Merrifield RB (1985) N-Terminal analogues of cecropin a: synthesis, antibacterial activity, and conformational properties. Biochemistry 24:1683–1688

    CAS  Google Scholar 

  4. Andrews J (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemoth 48:5–16

    CAS  Google Scholar 

  5. Asthana N, Prasad Yadav S, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279:55042–55050

    CAS  Google Scholar 

  6. Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from trichoderma longibrachiatum. J Am Chem Soc 114:2170–2172

    Google Scholar 

  7. Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    CAS  Google Scholar 

  8. Baumann G, Mueller P (1974) A molecular model of membrane excitability. J Supramol Struct 2:538–557

    CAS  Google Scholar 

  9. Bechinger B, Skladnev DA, Ogrel A, Li X, Rogozhkina EV, Ovchinnikova TV, O’Neil JDJ, Raap J (2001) 15N and 31P solid-state NMR investigations on the orientation of zervamicin and alamethicin in phosphatidylcholine membranes. Biochemistry 40:9428–9437

    CAS  Google Scholar 

  10. Becucci L, Maran F, Guidelli R (2012) Probing membrane permeabilization by the antibiotic lipopeptaibol trichogin GAIV in a tethered bilayer lipid membrane. Biochim Biophys Acta 1818:1656–1662

    CAS  Google Scholar 

  11. Benkirane N, Friede M, Guichard G, Briand JP, Van Regenmortel MH, Muller S (1993) Antigenicity and immunogenicity of modified synthetic peptides containing D-amino acid residues. Antibodies to a D-enantiomer do recognize the parent L-hexapeptide and reciprocally. J Biol Chem 268:26279–26285

    Google Scholar 

  12. Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/ phosphatidylcholine membranes. Biochemistry 29: 52–58 ((2007) Biochemistry 46(12):3653–3663

    Google Scholar 

  13. Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30:4671–4678

    CAS  Google Scholar 

  14. Bobone S, Piazzon A, Orioni B, Pedersen J, Nan YH, Hahm KS, Shin SY, Stella L (2011) The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K. J Pept Sci 17:335–341

    CAS  Google Scholar 

  15. Bobone S, Gerelli Y, De Zotti M, Bocchinfuso G, Farrotti A, Orioni B, Palleschi A, Sebastiani F, Latter E, Penfold J, Senesi R, Formaggio F, Toniolo C, Fragneto G, Stella L (2013a) Membrane thickness and the mechanism of action of the short peptaibol trichogin GAIV. Biochimica Biophysica Acta 1828:1013–1024

    CAS  Google Scholar 

  16. Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L (2013)b. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Peptide Sci 19:758–769

    Google Scholar 

  17. Bocchinfuso G, Palleschi A, Orioni B, Grande G, Formaggio F, Toniolo C, Park Y, Hahm KS, Stella L (2009) Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. J Pept Sci 15:550–558

    CAS  Google Scholar 

  18. Bocchinfuso G, Bobone S, Palleschi A, Stella L (2011) Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 68:2281–2301

    CAS  Google Scholar 

  19. Boheim G (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol 19:277–303

    CAS  Google Scholar 

  20. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704

    CAS  Google Scholar 

  21. Brandl CJ, Deber CM (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci USA 4:917–921

    Google Scholar 

  22. Cafiso DS (1994) Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Ann Rev Biophys Biomol Struct 23:141–165

    CAS  Google Scholar 

  23. Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML, Marcellini Hercolani Gaddi L, Novellino E, Grieco P (2008) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51:2354–2362

    CAS  Google Scholar 

  24. Chen HC, Brown JH, Morel JL, Huang CM (1988) Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett 236:462–466

    CAS  Google Scholar 

  25. Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of -helical antimicrobial peptides with enhanced activities and specificity/therapeutic Index. J Biol Chem 280:12316–12329

    CAS  Google Scholar 

  26. Chia BCS, Carver JA, Mulhern TD, Bowie JH (2000) Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata: solution structure and biological activity. Eur J Biochem 267:1889–2132

    Google Scholar 

  27. Cordes FS, Bright JN, Sansom MSP (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951–960

    CAS  Google Scholar 

  28. Daillant J (2005) Structure and fluctuations of a single floating lipid bilayer. Proc Natl Acad Sci USA 102:11639–11644

    CAS  Google Scholar 

  29. Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M (2002) General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta 1558:171–186

    CAS  Google Scholar 

  30. Degenkolb T, Kirschbaum J, Brückner H (2007) New sequences, constituents and producers of peptaibiotics: an updated review. Chem Biodivers 4:1052–1067

    CAS  Google Scholar 

  31. Dempsey CE, Bazzo R, Harvey TS, Syperek I, Boheim G, Campbel ID (1991) Contribution of proline-14 to the structure and actions of melittin. FEBS Lett 281:240–244

    CAS  Google Scholar 

  32. Derossi D, Joliot A, Chassaing G, Prochiantz A (1994) The third helix of Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  Google Scholar 

  33. Deshayes S, Plénat T, Charnet P, Divita G, Molle G, Heitz F (2006) Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 1758:1846–1851

    CAS  Google Scholar 

  34. Doig AJ (2008) Stability and design of alpha-helical peptides. Progr Mol Biol Transl Sci 83:1–52

    CAS  Google Scholar 

  35. Duclohier H (2004) Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. Eur Biophys J 33:169–174

    CAS  Google Scholar 

  36. Duclohier H, Wróblewski H (2001) Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. J Membr Biol 184:1–12

    CAS  Google Scholar 

  37. Duclohier H, Snook CF, Wallace BA (1998) Antiamoebin can function as a carrier or as a pore-forming peptaibol. Biochim Biophys Acta 1415:255–260

    CAS  Google Scholar 

  38. Epand RF, Epand RM, Monaco V, Stoia S, Formaggio F, Crisma M, Toniolo C (1999) The antimicrobial peptide trichogin and its interaction with phospholipid membranes. Eur J Biochem 266:1021–1028

    CAS  Google Scholar 

  39. Esteban-Martin S, Salgado J (2007) Self-assembling of peptide/membrane complexes by atomistic molecular dynamics simulations. Biophys J 92:903–912

    CAS  Google Scholar 

  40. Foerg C, Merkle HP (2008) On the biomedical promise of cell-penetrating peptides: limits versus prospects. J Pharm Sci 97:144–162

    Google Scholar 

  41. Formaggio F, Peggion C, Crisma M, Toniolo C (2001) Short-chain analogues of the lipopeptaibol antibiotic trichogin GA IV: conformational analysis and membrane modifying properties. J Chem Soc Perkin Trans 2:1372–1377

    Google Scholar 

  42. Fox RO, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 Å resolution. Nature 300:325–330

    CAS  Google Scholar 

  43. Frankel AD, Pabo CO (1988) Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193

    CAS  Google Scholar 

  44. Gaillard P, Carrupt PA, Testa B, Boudon A (1994) Molecular lipophilicity potential, a tool in 3D QSAR: Method and applications. J Comp Aided Mol Des 8:83–96

    CAS  Google Scholar 

  45. Gatto E, Mazzuca C, Stella L, Venanzi M, Toniolo C, Pispisa B (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J Phys Chem B 110:22813–22818

    CAS  Google Scholar 

  46. Grigoriev PA, Schlegel B, Kronen M, Berg A, Härtl A, Gräfe U (2003) Differences in membrane pore formation by peptaibols. J Pept Sci 9:763–768

    CAS  Google Scholar 

  47. Guo D, Mant CT, Taneja AK, Hodges RS (1986) Prediction of peptide retention times in reversed-phase high-performance liquid chromatography Correlation of observed and predicted peptide retention times factors and influencing the retention times of peptides. J Chromatogr 359:519–532

    CAS  Google Scholar 

  48. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Brit J Pharmacol 157:195–206

    CAS  Google Scholar 

  49. Henriques ST, Castanho MARB (2004) Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide Pep-1 in lipidic vesicles. Biochemistry 43:9716–9724

    CAS  Google Scholar 

  50. Henriques ST, Castanho MARB (2008) Translocation or membrane disintegration? Implication of peptide–membrane interactions in Pep-1 activity. J Pept Sci 14:482–487

    CAS  Google Scholar 

  51. Henriques ST, Melo MN, Castanho MARB (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7

    CAS  Google Scholar 

  52. Henriques ST, Quintas A, Bagatolli LA, Homblé F, Castanho MARB (2007) Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with Pep-1. Mol Membr Biol 24:282–293

    CAS  Google Scholar 

  53. Henriques ST, Castanho MARB, Pattenden LK, Aguilar M (2010) Fast membrane association is a crucial factor in the peptide Pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Biopolymers (Pept Sci) 94:314–322

    Google Scholar 

  54. Heuber C, Formaggio F, Baldini C, Toniolo C, Müller K (2007) Multinuclear solid-state-NMR and FT-IR-absorption investigations on lipid/trichogin bilayers. Chem Biodivers 4:1200–1218

    CAS  Google Scholar 

  55. Hinderliter A, Biltonen RL, Almeida PFF (2004) Lipid modulation of protein-induced membrane domains as a mechanism for controlling signal transduction. Biochemistry 43:7102–7110

    CAS  Google Scholar 

  56. Houghten RA, Blondelle SE (1992) Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31:12688–12694

    Google Scholar 

  57. Houghten RA, Blondelle SE (1994) Determination of the secondary structure of selected melittin analogues with different haemolytic activities. Biochem J 299:587–591

    Google Scholar 

  58. Huang HW (2009) Free Energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophys J 96:3263–3272

    CAS  Google Scholar 

  59. Hurley JH, Mason DA, Matthews BW (1992) Flexible-geometry conformational energy maps for the amino acid residue preceding a proline. Biopolymers 32:1443–1446

    CAS  Google Scholar 

  60. Ibrahim HR, Thomas U, Pellegrini A (2001) A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    CAS  Google Scholar 

  61. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88:1864–1868

    CAS  Google Scholar 

  62. Khandelia H, Kaznessis YN (2006) Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: Implications for peptide toxicity and activity. Peptides 27:1192–1200

    CAS  Google Scholar 

  63. Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1376:401–416

    CAS  Google Scholar 

  64. Killian JA, Nyholm TKM (2006) Peptides in lipid bilayers: the power of simple models. Curr Op Struct Biol 16:473–479

    CAS  Google Scholar 

  65. Kim JK, Lee SA, Shin S, Lee JY, Jeong KW, Nan YH, Park YS, Shin SY, Kim Y (2010) Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochim Biophys Acta 1798:1913–1925

    CAS  Google Scholar 

  66. Kindrachuk J, Napper S (2010) Structure-activity relationships of multifunctional host defence peptides. Mini Rev Med Chem 10:596–614

    CAS  Google Scholar 

  67. Krishnakumar SS, London E (2007) Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 374:671–687

    CAS  Google Scholar 

  68. Kropacheva TN, Raap J (2002) Ion transport across a phospholipid membrane mediated by the peptide trichogin GA IV. Biochim Biophys Acta 1567:193–203

    CAS  Google Scholar 

  69. Kučerka N, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202

    Google Scholar 

  70. Kumar S, Bansa M (1998) Dissecting α-helices: Position-specific analysis of α-helices in globular proteins. Proteins: Struct Funct Bioinf 31:460–476

    CAS  Google Scholar 

  71. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  72. Langel Ü (2006) Handbook of cell penetrating peptides. CRC Press, Oxford

    Google Scholar 

  73. Langelaan DN, Wieczorek M, Blouin C, Rainey JK (2010) Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model 50:2213–2220

    CAS  Google Scholar 

  74. Laver DR (1994) The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys J 66:355–359

    CAS  Google Scholar 

  75. Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y (2004) Antibiotic activity and structural analysis of thescorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun 323:712–719

    CAS  Google Scholar 

  76. Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L (2007) The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 4:1027–1051

    CAS  Google Scholar 

  77. Liu Y, Engelman DM, Gerstein M (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 3:0054.1–0054.12

    Google Scholar 

  78. Lummis SCR, Beene DL, Lee LW, Lester HA, Broadhurst R, Dougherty DA (2005) Cis–trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438:248–252

    CAS  Google Scholar 

  79. Lundberg P, Langel Ü (2003) A brief introduction to cell-penetrating peptides (review). J Mol Recognit 16:227–233

    CAS  Google Scholar 

  80. Makino S, Kayahara T, Tashiro K, Takahashi M, Tsuji T, Shoji M (2001) Discovery of a novel serine protease inhibitor utilizing a structure-based and experimental selection of fragments technique. J Comp Aided Mol Des 15:553–559

    CAS  Google Scholar 

  81. Mangoni ML, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey I, Malfi S, Marcellini L, Barra D, Novellino E, Grieco P (2011) Structure-activity relationship, conformational and biological studies of temporin L analogues. J Med Chem 54:1298–1307

    CAS  Google Scholar 

  82. Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers (Pept Sci) 92:573–595

    Google Scholar 

  83. Marquette A, Lorber B, Bechinger B (2010) Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities. Biophys J 98:2544–2553

    CAS  Google Scholar 

  84. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    CAS  Google Scholar 

  85. Mazzuca C, Stella L, Venanzi M, Formaggio F, Toniolo C, Pispisa B (2005) Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration. Biophys J 88:3411–3421

    CAS  Google Scholar 

  86. Mazzuca C, Orioni B, Coletta M, Formaggio F, Toniolo C, Maulucci G, De Spirito M, Pispisa B, Venanzi M, Stella L (2010) Fluctuations and the rate-limiting step of peptide-induced membrane leakage. Biophys J 99:1791–1800

    CAS  Google Scholar 

  87. Melo MN, Ferre R, Castanho MARB (2009) Antimicrobial peptides: linkong partition, activity and high-membrane-bound concentrations. Nat Rev Microbiol 7:245–250

    CAS  Google Scholar 

  88. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2000) Self-assembling properties of membrane-modifying peptides studied by PELDOR and CW-ESR spectroscopies. J Am Chem Soc 122:3843–3848

    CAS  Google Scholar 

  89. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2003) Self-assembling and membrane modifying properties of a lipopeptaibol studied by CW-ESR and PELDOR spectroscopies. J Pept Sci 9:690–700

    CAS  Google Scholar 

  90. Monaco V, Formaggio F, Crisma M, Toniolo C, Hanson P, Millhauser GL (1999) Orientation and immersion depth of a helical lipopeptaibol in membranes using TOAC as an ESR Probe. Biopolymers 50:239–253

    CAS  Google Scholar 

  91. Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotech 19:1173–1176

    CAS  Google Scholar 

  92. Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153

    CAS  Google Scholar 

  93. Munhoz-Morris MA, Heitz F, Divita G, Morris MC (2007) The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochem Biophys Res Commun 355:877–882

    Google Scholar 

  94. Nekhotiaeva N, Elmquist A, Kuttuva Rajarao G, Hällbrink M, Langel Ü, Good L (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18:394–396

    CAS  Google Scholar 

  95. Nicolas P (2009) Multifunctional host-defense peptides: intracellular targeting antimicrobial peptides. FEBS J 276:6483–6496

    Google Scholar 

  96. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36:1826–1835

    CAS  Google Scholar 

  97. Oren Z, Shai Y (2000) Cyclization of a cytolytic amphipathic r-helical peptide and its diastereomer:effect on structure, interaction with model membranes, and biological function. Biochemistry 39:6103–6114

    Google Scholar 

  98. Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R (2002) Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 269:3869–3880

    CAS  Google Scholar 

  99. Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta 1788:1523–1533

    CAS  Google Scholar 

  100. Palm C, Netzereab S, Hällbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27:1710–1716

    CAS  Google Scholar 

  101. Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and escherichia coli. Biochemistry 49:7920–7929

    CAS  Google Scholar 

  102. Papo N, Oren Z, Pag U, Sahl HS, Shai Y (2002) The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 277:33913–33921

    CAS  Google Scholar 

  103. Park, CB, Kim H. S., Kim, S.C (1998) Mechanism of action of the antimicrobial peptide buforin : Buforin kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Google Scholar 

  104. Park Y, Lee DG, Jang SH, Woo ER, Jeong HG, Choi CH, Hahm KS (2003) A Leu–Lys-rich antimicrobial peptide: activity and mechanism. Biochim Biophys Acta 1645:172–182

    CAS  Google Scholar 

  105. Park N, Yamanaka K, Tran D, Chandrangsu P, Akers JC, de Leon JC, Morrissette NS, Selsted ME, Tan M (2009) The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. J Antimicrob Chemother 63:115–123

    CAS  Google Scholar 

  106. Parker JMR, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites. Biochemistry 25:5425–5432

    CAS  Google Scholar 

  107. Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A (2008) Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and function-based approach. Biochemistry 47:9057–9070

    CAS  Google Scholar 

  108. Peggion C, Formaggio F, Crisma M, Epand RF, Epand R, Toniolo C (2003) Trichogin: a paradigm for lipopeptaibols. J Pep Sci 9:679–689

    Google Scholar 

  109. Persson D, Thorén PEG, Bengt N (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett 505:307–312

    CAS  Google Scholar 

  110. Pukala TL, Brinkworth CS, Carver JA, Bowie JH (2004) Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides. Biochemistry 43:937–944

    CAS  Google Scholar 

  111. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240:1648–1652

    CAS  Google Scholar 

  112. Ringstad L, Schmidtchen A, Malmsten M (2010) Effects of single amino acid substitutions on peptide interaction with lipid membranes and bacteria–variants of GKE21, an internal sequence from human LL-37. Coll Surf A 354:65–71

    CAS  Google Scholar 

  113. Rodríguez A, Villegas E, Satake H, Possani LD, Corzo G (2011) Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improves its therapeutic index. Amino Acid 40:61–68

    Google Scholar 

  114. Salnikov ES, Erilov DA, Milov AD, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA (2006) Location and aggregation of the spin-labeled peptide trichogin GAIV in a phospholipid membrane as revealed by pulsed EPR. Biophys J 91:1532–1540

    CAS  Google Scholar 

  115. Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, O’Neil JDJ, Raap J, Bechinger B (2009) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 96:86–100

    CAS  Google Scholar 

  116. Samatey FA, Xu C, Popot JL (1995) On the distribution of amino acid residues in transmembrane alpha-helix bundles. Proc Natl Acad Sci USA 92:4577–4581

    CAS  Google Scholar 

  117. Sansom MSP, Weinstein H (2000) Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices. Trends Pharmn Sci 21:445–451

    CAS  Google Scholar 

  118. Senes A, Engel DE, Degrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479

    Google Scholar 

  119. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biolpolymers (Pept Sci) 66:236–248

    CAS  Google Scholar 

  120. Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271:7305–7308

    CAS  Google Scholar 

  121. Shin SY, Yang ST, Park EJ, Eom SH, Song WK, Kim JI, Lee SH, Lee MK, Lee DG, Hahm KS, Kim Y (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Pept Res 58:504–514

    CAS  Google Scholar 

  122. Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    CAS  Google Scholar 

  123. Smeazzetto S, De Zotti M, Moncelli MR (2011) A new approach to detect and study ion channel formation in microBLMs. Electrochem Comm 13:834–836

    CAS  Google Scholar 

  124. Song YM, Yang ST, Lim SS, Kim Y, Hahm KS, Kim JI, Shin SY (2004) Effects of L- or D-Pro incorporation into hydrophobic or hydrophilic helix face of amphipathic a-helical model peptide on structure and cell selectivity. Biochem Biophys Res Commun 314:615–621

    CAS  Google Scholar 

  125. Stella L, Melchionna S (1998) Equilibration and sampling in molecular dynamics simulations of biomolecules. J Chem Phys 109:10115–10118

    CAS  Google Scholar 

  126. Stella L, Mazzuca C, Venanzi M, Palleschi A, Didonè M, Formaggio F, Toniolo C, Pispisa B (2004) Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide Trichogin GA IV. Biophys J 86:936–945

    Google Scholar 

  127. Stella L, Burattini M, Mazzuca C, Palleschi A, Venanzi M, Baldini C, Formaggio F, Toniolo C, Pispisa B (2007) Alamethicin interaction with lipid membranes: a spectroscopic study on synthetic analogues. Chem Biodivers 4:1299–1312

    CAS  Google Scholar 

  128. Subasinghage AP, Conlon JM, Hewage CM (2010) Development of potent anti-infective agents from Silurana tropicalis: Conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4 K]XT-7. Biochim Biophys Acta 1804:1020–1028

    CAS  Google Scholar 

  129. Suh JY, Lee YT, Park CB, Lee KH, Kim SC, Choi BS (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem 2:665–674

    Google Scholar 

  130. Syryamina VN, Isaev NP, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA (2010) Small-amplitude backbone motions of the spin-labeled lipopeptide trichogin GAIV in a lipid membrane as revealed by electron spin echo. J Phys Chem B 114:12277–12283

    CAS  Google Scholar 

  131. Syryamina VN, De Zotti M, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA (2012) A molecular view on the role of cholesterol upon membrane insertion, aggregation, and water accessibility of the antibiotic lipopeptide trichogin GAIV as revealed by EPR. J Phys Chem B 116:5653–5660

    CAS  Google Scholar 

  132. Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu H, Waring AJ, Lehrer RI (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem 269:1181–1189

    CAS  Google Scholar 

  133. Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278:1310–1315

    CAS  Google Scholar 

  134. Thennarasu S, Nagaraj R (1996) Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. Protein Eng 9:1219–1224

    CAS  Google Scholar 

  135. Thomas R, Vostrikov VV, Greathouse DV, Koeppe RE (2009) Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry 48:11883–11891

    CAS  Google Scholar 

  136. Toniolo C, Brückner H (eds) (2009) Peptaibiotics. Wiley-VCH, Weinheim

    Google Scholar 

  137. Toniolo C, Peggion C, Crisma M, Formaggio F, Shui X, Eggleston DS (1994) Structure determination of racemic trigogin A IV using centrosymmetric crystals. Nature Struct Biol 1:908–914

    CAS  Google Scholar 

  138. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Pept Sci) 55:4–30

    CAS  Google Scholar 

  139. Ulmschneider MB, Sansom MSP (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14

    CAS  Google Scholar 

  140. Venanzi M, Gatto E, Bocchinfuso G, Palleschi A, Stella L, Baldini C, Formaggio F, Toniolo C (2006)a Peptide folding dynamics: a time-resolved study from the nanosecond to the microsecond time regime. J Phys Chem B 110:22834–22841

    Google Scholar 

  141. Venanzi M, Gatto E, Bocchinfuso G, Palleschi A, Stella L, Formaggio, F, Toniolo C (2006)b Dynamics of formation of a helix-turn-helix structure in a membrane-active peptide: a time-resolved spectroscopic study. Chem Bio Chem 7:43–45

    Google Scholar 

  142. Venanzi M, Bocchinfuso G, Gatto E, Palleschi A, Stella L, Formaggio F, Toniolo C (2009) Metal binding properties of fluorescent analogues of Trichogin GA IV: a conformational study by time-resolved spectroscopy and molecular mechanics investigations. Chem Bio Chem 10:91–97

    CAS  Google Scholar 

  143. Vijayan K, Discher DE, Lal J, Janmey P, Goulian M (2005) Interactions of membrane-active peptides with thick, neutral, nonzwitterionic bilayers. J Phys Chem B 109:14356–14364

    CAS  Google Scholar 

  144. Vivés E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Google Scholar 

  145. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    CAS  Google Scholar 

  146. Williams KA, Deber CM (1991) Proline residues in transmembrane helixes: structural or dynamic role? Biochemistry 30:8919–8923

    CAS  Google Scholar 

  147. Wong HT, Bowie JH, Carver JA (1997) The solution structure and activity of Caerin 1.1, an antimicrobial peptide from the australian green tree frog, Litoria Splendida. Eur J Biochem 247:545–557

    CAS  Google Scholar 

  148. Xiao Y, Herrera AI, Bommineni YR, Soulages JL, Prakash O, Zhang G (2009) The central kink region of Fowlicidin-2, an α-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. J Innate Immun 1:268–280

    CAS  Google Scholar 

  149. Yandek LE, Pokorny A, Floren A, Knoelke K, Langel U, Almeida PFF (2007) Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J 92:2434–2444

    Google Scholar 

  150. Yang ST, Shin SY, Kim YC, Kim Y, Hahm KS, Kim JI (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Comm 296:1044–1050

    CAS  Google Scholar 

  151. Yang ST, Jeon JH, Kim Y, Shin SY, Hahm KS, Kim JI (2006a) Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family. Biochemistry 45:1775–1784

    CAS  Google Scholar 

  152. Yang ST, Lee JY, Kim HJ, Eu YJ, Shin SY, Hahm K-S, Kim JI (2006b) Contribution of a central proline in model amphipathic a-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J 273:4040–4054

    CAS  Google Scholar 

  153. Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A (2005a) Controlled alteration of the shape and conformational stability of a-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188

    CAS  Google Scholar 

  154. Zelezetsky I, Pag U, Sahl HG, Tossi A (2005b) Tuning the biological properties of amphipathic -helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides 26:2368–2376

    CAS  Google Scholar 

  155. Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S, Crovella S, Tossi A (2006) Evolution of the primate cathelicidin: correlation between structural variations and antimicrobial activity. J Biol Chem 281:19861–19871

    CAS  Google Scholar 

  156. Zhang L, Gazit EA, Boman HG, Shai Y (1995) Interaction of the mammalian antimicrobial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34:11479–11488

    Google Scholar 

  157. Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of α-helical peptides. Biochemistry 38:8102–8111

    CAS  Google Scholar 

  158. Zhang Y, Lu H, Lin Y, Cheng J (2011) Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 44:6641–6644

    CAS  Google Scholar 

  159. Zhou NE, Mant CT, Hodges RS (1990) Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices. Pept Res 3:8–20

    Google Scholar 

  160. Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm K-S, Shin SY (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochim Biophys Res Commun 349:769–774

    CAS  Google Scholar 

  161. Ziegler A, Blatter XL, Seelig A, Seelig J (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42:9185–9194

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Bobone .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bobone, S. (2014). Results and Discussion. In: Peptide and Protein Interaction with Membrane Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06434-5_4

Download citation

Publish with us

Policies and ethics