Skip to main content

Methods for Studying Biofilms in Azospirillum and Other PGPRs

  • Chapter
Handbook for Azospirillum

Abstract

To produce beneficial effects, plant growth promoting bacteria have to interact with the plant surface to form complex multicellular assemblies and aggregates named biofilms. The study of biofilm development and its physiology is an emerging topic in the knowledge of plant microbe interaction. Therefore, techniques to study its formation and functions are evolving from easy approaches to more complex, time consuming, and with expensive equipment requirement ones. The multiwell microtiter plate assay is the most widely used method due to its versatility to reveal the biofilm and that it allows the analysis of different stages of biofilm. Other more sophisticated protocols based on the use of fluorochromes are described. Care should be taken in analyzing results and their interpretation as differences among roots colonizing and biofilm formed on inert supports are normally to occur. Here, we make a presentation of the methods used to study biofilm and then describe in detail the most commonly used in investigations of rhizobacteria biofilms and its components with application to root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167(2):179–184

    CAS  PubMed  Google Scholar 

  • Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12(3):231–236

    CAS  PubMed  Google Scholar 

  • Arruebarrena Di Palma A, Pereyra C, Moreno Ramirez L, Vázquez X, María L, Baca BE, Pereyra MA, Lamattina L, Creus CM (2013) Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett 338(1):77–85

    PubMed  Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, Del Valle M, Pérez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33(2):167–172

    CAS  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez J-P, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fert Soils 40(3):188–193

    Google Scholar 

  • Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle J-P, Martelly I, Papy-García D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13(9):647–653

    CAS  PubMed  Google Scholar 

  • Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1993) Anchoring of Azospirillum brasilense to hydrophobic polystyrene and wheat roots. J Gen Microbiol 139(2):379–385

    CAS  Google Scholar 

  • Bashan Y, Levanony H, Whitmoyer RE (1991) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol 137(1):187–196

    Google Scholar 

  • Bassis CM, Visick KL (2010) The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol 192(5):1269–1278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bergmans L, Moisiadis P, Van Meerbeek B, Quirynen M, Lambrechts P (2005) Microscopic observation of bacteria: review highlighting the use of environmental SEM. Int Endod J 38(11):775–788

    CAS  PubMed  Google Scholar 

  • Beyhan S, Tischler AD, Camilli A, Yildiz FH (2006) Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188(10):3600–3613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116

    CAS  PubMed  Google Scholar 

  • Bogino PC, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859

    PubMed Central  PubMed  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin-A-Woeng TF, Lugtenberg BJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16(11):983–993

    CAS  PubMed  Google Scholar 

  • Burdman S, Jurkevitch E, Schwartsburd B, Hampel M, Okon Y (1998) Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144(7):1989–1999

    CAS  PubMed  Google Scholar 

  • Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94

    PubMed Central  PubMed  Google Scholar 

  • Ceri H, Olson M, Stremick C, Read R, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Method 83(2):89–105

    CAS  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24(2):271–284

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    CAS  PubMed  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221(2):297–303

    CAS  PubMed  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB, Palmer RJ Jr, Toftgaard Nielsen A, Givskov M, Molin S (1999) Molecular tools for study of biofilm physiology. Method Enzymol 310:20–42

    CAS  Google Scholar 

  • Christensen GD, Simpson W, Younger J, Baddour L, Barrett F, Melton D, Beachey E (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danilatos GD (2012) Velocity and ejector-jet assisted differential pumping: novel design stages for environmental SEM. Micron 43:600–611

    CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    CAS  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton J, Greenberg E (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    CAS  PubMed  Google Scholar 

  • Decker EM (2001) The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci. Lett Appl Microbiol 33(3):188–192

    CAS  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    PubMed Central  PubMed  Google Scholar 

  • Dufrěne YF, Vermeiren H, Vanderleyden J, Rouxhet PG (1996) Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense. Microbiology 142(4):855–865

    Google Scholar 

  • Dufrêne YF (2008) Towards nanomicrobiology using atomic force microscopy. Nature Rev Microbiol 6(9):674–680

    Google Scholar 

  • Edwards AN, Siuti P, Bible AN, Alexandre G, Retterer ST, Doktycz MJ, Morrell‐Falvey JL (2011) Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy. FEMS Microbiol Lett 314(2):131–139

    CAS  PubMed  Google Scholar 

  • Fahs A, Quilès F, Jamal D, Humbert F, Francius G (2014) In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies. J Phys Chem B 118(24):6702–6713. doi:10.1021/jp5030872

    CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8(9):623–633

    CAS  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006a) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56(2):195–206

    CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, Hirsch AM (2006b) A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc 150(1):79–88

    Google Scholar 

  • Green CS (2010) Characterizing cell-cell and cell-surface interactions in the rhizobacterium Azospirillum brasilense. http://trace.tennessee.edu/utk_gradthes/712/

  • Guerrero-Molina MF, Winik BC, Pedraza RO (2012) More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol 61:205–212

    Google Scholar 

  • Hamilton M, Heersink J, Buckingham-Meyer K, Goeres D, (eds.) (2003) The biofilm laboratory: step-by-step protocols for experimental design, analysis, and data interpretation. Cytergy

    Google Scholar 

  • Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59(1):1–7

    CAS  PubMed  Google Scholar 

  • Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52(11):1048–1056

    CAS  PubMed  Google Scholar 

  • Hannig M (1999) Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 107(1):55–64

    CAS  PubMed  Google Scholar 

  • Harrington BJ, Hageage GJ (2003) Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med 34(5):361–367

    Google Scholar 

  • Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2005) Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 130(11):1543–1550

    CAS  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    CAS  PubMed  Google Scholar 

  • Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Method 44(2):121–129

    CAS  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    CAS  PubMed  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhn D, Balkis M, Chandra J, Mukherjee P, Ghannoum M (2003) Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41(1):506–508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence J, Neu T, Swerhone G (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Method 32(3):253–261

    CAS  Google Scholar 

  • Lawrence J, Swerhone G, Leppard G, Araki T, Zhang X, West M, Hitchcock A (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69(9):5543–5554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence JR, Neu TR (1999) Confocal laser scanning microscopy for analysis of microbial biofilms. Method Enzymol 310:131

    CAS  Google Scholar 

  • Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2(2):288–356

    PubMed Central  PubMed  Google Scholar 

  • Leeder J, Dosch H-M, Harper P, Lam P, Spielberg S (1989) Fluorescence-based viability assay for studies of reactive drug intermediates. Anal Biochem 177(2):364–372

    CAS  PubMed  Google Scholar 

  • Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S (2009) Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiol Lett 300(1):75–82

    CAS  PubMed  Google Scholar 

  • Leroy C, Delbarre-Ladrat C, Ghillebaert F, Rochet M-J, Compere C, Combes D (2007) A marine bacterial adhesion microplate test using the DAPI fluorescent dye: a new method to screen antifouling agents. Lett Appl Microbiol 44(4):372–378

    CAS  PubMed  Google Scholar 

  • Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149(2):353–362

    CAS  PubMed  Google Scholar 

  • Macià MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm growing bacteria. Clin Microbiol Infect 20(10):981–990. doi:10.1111/1469-0691.12651

    PubMed  Google Scholar 

  • Matthysse AG, Kijne JW (1998) Attachment of Rhizobiaceae to plant cells. The Rhizobiaceae. Springer, In, pp 235–249

    Google Scholar 

  • McBain AJ (2009) In vitro biofilm models: an overview. Adv Appl Microbiol 69:99–132

    CAS  PubMed  Google Scholar 

  • McLean RJ, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154(2):259–263

    CAS  PubMed  Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol; 1B. 1.1–1B. 1.18

    Google Scholar 

  • Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137(9):2241–2246

    CAS  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21(7):1001–1009

    CAS  PubMed  Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Method 41(2):85–112

    CAS  Google Scholar 

  • Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G (2009) Quorum sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67(3):468–478

    PubMed  Google Scholar 

  • Nilsson K, Otendal M (2001) A first step towards detection of biofilm using fluorometry. Lund Reports on Atomics Physics http://luplubluse

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    PubMed  Google Scholar 

  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Method Enzymol 310:91–109

    Google Scholar 

  • Palmer J, Robert J (1998) Microscopy flowcells: perfusion chambers for real-time study of biofilms. Method Enzymol 310:160–166

    Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Method 72(2):157–165

    CAS  Google Scholar 

  • Peterson SB, Irie Y, Borlee BR, Murakami K, Harrison JJ, Colvin KM, Parsek MR (2011) Different methods for culturing biofilms in vitro. In: Bjarnsholt T, Ostrup Jensen P, Moser C, Hoiby N (eds) Biofilm infections. Springer, New York

    Google Scholar 

  • Petrova L, Sheludko A, Katsy E (2010) Plasmid rearrangements and alterations in Azospirillum brasilense biofilm formation. Microbiology 79(1):121–124

    CAS  Google Scholar 

  • Pitts B, Hamilton MA, Zelver N, Stewart PS (2003) A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Method 54(2):269–276

    CAS  Google Scholar 

  • Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46(4):449–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7(6):602–609

    CAS  PubMed  Google Scholar 

  • Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157(9):867–875

    CAS  PubMed  Google Scholar 

  • Rinaudi LV, Giordano W (2009) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304(1):1–11

    PubMed  Google Scholar 

  • Robertson JL, Holliday T, Matthysse A (1988) Mapping of Agrobacterium tumefaciens chromosomal genes affecting cellulose synthesis and bacterial attachment to host cells. J Bacteriol 170(3):1408–1411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44(4):990

    Google Scholar 

  • Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Saínz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272(2):127–136

    PubMed  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34(3):261–279

    Google Scholar 

  • Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D (2007) Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol 103(5):1808–1820

    CAS  PubMed  Google Scholar 

  • Schmidt I, Steenbakkers PJ, op den Camp HJ, Schmidt K, Jetten MS (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186(9):2781–2788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and uv disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601

    CAS  PubMed  Google Scholar 

  • Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282(5):2753–2764

    CAS  PubMed  Google Scholar 

  • Sheludko AV, Kulibyakina OV, Shirokov AA, Petrova P, Matora LY, Katsy EI (2008) The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology 77:313–317

    CAS  Google Scholar 

  • Siuti P, Green C, Edwards AN, Doktycz MJ, Alexandre G (2011) The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense. FEMS Microbiol Lett 323(2):105–112

    CAS  PubMed  Google Scholar 

  • Skvortsov IM, Ignatov VV (1998) Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol Lett 165(2):223–229

    CAS  PubMed  Google Scholar 

  • Smit G, Kijne J, Lugtenberg B (1986) Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 168(2):821–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sorroche FG, Spesia MB, Zorreguieta Á, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78(12):4092–4101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soto MJ, Sanjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152(11):3167–3174

    CAS  PubMed  Google Scholar 

  • Stepanović S, Vuković D, Hola V, Bonaventure G, Djukić S, Ćirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8):891–899

    PubMed  Google Scholar 

  • Sternberg C, Tolker‐Nielsen T (2006) Growing and analyzing biofilms in flow cells. Curr protoc Microbiol:1B. 2.1–1B. 2.15

    Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista cluster. Syst Appl Microbiol 24(1):83–97

    CAS  PubMed  Google Scholar 

  • Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188(7):2681–2691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tote K, Berghe DV, Maes L, Cos P (2008) A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 46(2):249–254

    CAS  PubMed  Google Scholar 

  • Vesper SJ, Bauer WD (1986) Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Appl Environ Microbiol 52(1):134–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Villa F, Remelli W, Forlani F, Gambino M, Landini P, Cappitelli F (2012) Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling 28(8):823–833

    CAS  PubMed  Google Scholar 

  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS–matrix. Water Res 43(1):63–76

    CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei H-L, Zhang L-Q (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie Van Leeuwenhoek 89(2):267–280

    PubMed  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430

    PubMed Central  PubMed  Google Scholar 

  • Wolfaardt G, Lawrence J, Robarts R, Caldwell S, Caldwell D (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60(2):434–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288(1):118–124

    CAS  PubMed  Google Scholar 

  • Zhu G-Y, Dobbelaere S, Vanderleyden J (2002) Use of green fluorescent protein to visualize rice root colonization by Azospirillum irakense and A. brasilense. Funct Plant Biol 29(11):1279–1285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia M. Creus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salcedo, F., Pereyra, C.M., Arruebarrena Di Palma, A., Lamattina, L., Creus, C.M. (2015). Methods for Studying Biofilms in Azospirillum and Other PGPRs. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_11

Download citation

Publish with us

Policies and ethics