Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2284 Accesses

Abstract

Position sensors with nanometer resolution are a key component of many precision imaging and fabrication machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a two-varying-element bridge circuit, the nonlinearity due to \(\Delta R/2\) in Eq. (5.34) is 0.5 % nonlinearity per percent of strain (Kester 2002). Since the maximum strain of a piezoelectric actuator is 0.1 %, the maximum nonlinearity is only 0.05 % and can be neglected. If this magnitude of nonlinearity is not tolerable, compensating circuits are available (Kester 2002)

References

  • Abramovitch DY, Andersson SB, Pao LY, Schitter G (2007) A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. In: Proceedings of American control conference, New York City, NY, pp 3488–3502, July 2007

    Google Scholar 

  • Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83(7–9):337–437

    Article  Google Scholar 

  • Barlian A, Park W-T, Mallon J, Rastegar A, Pruitt B (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97(3):513–552

    Article  Google Scholar 

  • Baxter LK (1997) Capacitive sensors: design and applications. IEEE Press, Piscataway

    Google Scholar 

  • Borionetti G, Bazzalia A, Orizio R (2004) Atomic force microscopy: a powerful tool for surface defect and morphology inspection in semiconductor industry. Eur Phys J Appl Phys 27(1–3):101–106

    Article  Google Scholar 

  • Brown RG, Hwang PYC (1997) Introduction to random signals and applied kalman filtering. Wiley, New York

    Google Scholar 

  • Butler H (2011) Position control in lithographic equipment. IEEE Control Syst 31(5):28–47

    Article  MathSciNet  Google Scholar 

  • Chassagne L, Wakim M, Xu S, Topçu S, Ruaux P, Juncar P, Alayli Y (2007) A 2d nano-positioning system with sub-nanometric repeatability over the millimetre displacement range. Meas Sci Technol 18(11):3267–3272

    Article  Google Scholar 

  • Chen BM, Lee TH, Peng K, Venkatarmanan V (2006) Hard disk drive servo system. Springer, London

    Google Scholar 

  • Chu LL, Gianchandani YB (2003) A micromachined 2d positioner with electrothermal actuation and sub-nanometer capacitive sensing. J Micromech Microeng 13(2):279–285

    Article  Google Scholar 

  • Chu C-L, Fan S-H (2006) A novel long-travel piezoelectric-driven linear nanopositioning stage. Precis Eng 30(1):85–95

    Article  MathSciNet  Google Scholar 

  • Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  • DiBiasio CM, Culpepper ML (2008) Design of a meso-scale six-axis nanopositioner with integrated position sensing. In: Proceedings 5th annual international symposium on nanomanufacturing, Singapore

    Google Scholar 

  • Dong W, Sun LN, Du ZJ (2007) Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens Actuators A 135(1):250–256

    Article  Google Scholar 

  • Dukes JN, Gordon GB (1970) A two hundred-foot yardstick with graduations every microinch. Hewlett-Packard J 21(2):2–8

    Google Scholar 

  • van Etten WC (2005) Introduction to noise and random processes. Wiley, West Sussex

    Book  Google Scholar 

  • Fantner GE, Schitter G, Kindt JH, Ivanov T, Ivanova K, Patel R, Holten-Andersen N, Adams J, Thurner PJ, Rangelow IW, Hansma PK (2006) Components for high speed atomic force microscopy. Ultramicroscopy 106(2–3):881–887

    Google Scholar 

  • FASTRACK high-accuracy linear encoder scale system. Data sheet l-9517-9356-01-b. Online: www.renishaw.com.

  • Fericean S, Droxler R (2007) New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation. IEEE Sens J 7(11):1538–1545

    Article  Google Scholar 

  • Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nanorobotics. IEEE Robot Autom Mag 13(3):78–92

    Article  Google Scholar 

  • Fleming AJ (2012a) Estimating the resolution of nanopositioning systems from frequency domain data. In: Proceedings IEEE international conference on robotics and automation, St. Paul, MN, pp 4786–4791, May 2012

    Google Scholar 

  • Fleming AJ (2012b) Measuring picometer nanopositioner resolution. In: Proceedings of Actuator 2012, 13th international conference on new actuators, Bremen, June 18–20 2012

    Google Scholar 

  • Fleming AJ, Moheimani SOR (2005) Control oriented synthesis of high performance piezoelectric shunt impedances for structural vibration control. IEEE Trans Control Syst Technol 13(1):98–112

    Article  Google Scholar 

  • Fleming AJ, Wills AG, Moheimani SOR (2008) Sensor fusion for improved control of piezoelectric tube scanners. IEEE Trans Control Syst Technol 15(6):1265–6536

    Article  Google Scholar 

  • Fleming AJ, Kenton BJ, Leang KK (2010) Bridging the gap between conventional and video-speed scanning probe microscopes. Ultramicroscopy 110(9):1205–1214

    Article  Google Scholar 

  • Fleming AJ, Aphale SS, Moheimani SOR (2010) A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans Nanotechnol 9(4):438–448

    Article  Google Scholar 

  • Fleming AJ, Leang KK (2010) Integrated strain and force feedback for high performance control of piezoelectric actuators. Sens Actuators A 161(1–2):256–265

    Article  Google Scholar 

  • Fleming AJ (2010) Nanopositioning system with force feedback for high-performance tracking and vibration control. IEEE Trans Mechatron 15(3):433–447

    Article  MathSciNet  Google Scholar 

  • Fleming AJ (2011) Dual-stage vertical feedback for high speed-scanning probe microscopy. IEEE Trans Control Syst Technol 19(1):156–165

    Article  Google Scholar 

  • Fleming AJ (2012) A method for measuring the resolution of nanopositioning systems. Rev Sci Instrum 83(8):086101

    Article  Google Scholar 

  • Fraden J (2004) Handboook of modern sensors: physics, designs, and applications. Springer, New York

    Google Scholar 

  • Guliyev E, Michels T, Volland B, Ivanov T, Hofer M, Rangelow I (2012) High speed quasi-monolithic silicon/piezostack spm scanning stage. Microelectron Eng 98:520–523

    Article  Google Scholar 

  • Hariharan P (2007) Basics of interferometry, 2nd edn. Academic Press, London

    Google Scholar 

  • Heidenhain exposed linear encoders. Online: www.heidenhain.com.

  • Hicks TR, Atherton PD, Xu Y, McConnell M (1997) The nanopositioning book. Queensgate Intstruments Ltd, Berkshire

    Google Scholar 

  • Humphris A, McConnell M, Catto D (2006) A high-speed atomic force microscope capable of video-rate imaging. Microscopy and analysis: SPM supplement, pp 29–31, Mar 2006

    Google Scholar 

  • ISO 5725 (1994) Accuracy (trueness and precision) of measurement methods and results

    Google Scholar 

  • ISO/IEC Guide 98:1993 (1994) Guide to the expression of uncertainty in measurement. Interational Organization for Standardization

    Google Scholar 

  • JCGM 200:2008 (2008) International vocabulary of metrology basic and general concepts and associated terms (VIM), 3rd edn

    Google Scholar 

  • Karrai K, Braun P (2010) Miniature long-range laser displacement sensor. In: Proceedings Actuator Conference, Bremen, pp 285–288, June 2010

    Google Scholar 

  • Kartik V, Sebastian A, Tuma T, Pantazi A, Pozidis H, Sahoo DR (2012) High-bandwidth nanopositioner with magnetoresistance based position sensing. Mechatronics 22(3):295–301

    Article  Google Scholar 

  • Kester W (2002) Sensor signal conditioning. Analog Devices, Newnes

    Google Scholar 

  • Khiat A, Lamarque F, Prelle C, Pouille P, Leester-Schädel M, Büttgenbach S (2010) Two-dimension fiber optic sensor for high-resolution and long-range linear measurements. Sens Actuators A Phys 158(1):43–50

    Article  Google Scholar 

  • Kim M, Moon W, Yoon E, Lee K-R (2006) A new capacitive displacement sensor with high accuracy and long-range. Sens Actuators A Phys 130–131(14):135–141

    Article  Google Scholar 

  • Kobayashi M, Sumitomo K, Torimitsu K (2007) Real-time imaging of DNA streptavidin complex formation in solution using a high-speed atomic force microscope. Ultramicroscopy 107(2–3):184–190

    Google Scholar 

  • Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw Hill, Boston

    Google Scholar 

  • Kuijpers AA, Krijnen GJM, Wiegerink RJ, Lammerink TSJ, Elwenspoek M (2003) 2d-finite-element simulations for long-range capacitive position sensor. J Micromech Microeng 13(4):S183–S189

    Article  Google Scholar 

  • Kuijpers AA, Krijnen GJM, Wiegerink RJ, Lammerink TSJ, Elwenspoek M (2006) A micromachined capacitive incremental position sensor: part 1 analysis and simulations. J Micromech Microeng 16(6):S116–S124

    Article  Google Scholar 

  • Kuijpers AA, Krijnen GJM, Wiegerink RJ, Lammerink TSJ, Elwenspoek M (2006) A micromachined capacitive incremental position sensor: part 2 experimental assessment. J Micromech Microeng 16(6):S125–S134

    Article  Google Scholar 

  • Lantz MA, Binnig GK, Despont M, Drechsler U (2005) A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 16(8):1089–1094

    Article  Google Scholar 

  • Leang KK, Zou Q, Devasia S (2009) Feedforward control of piezoactuators in atomic force microscope systems. Control Syst Mag 29(1):70–82

    Article  MathSciNet  Google Scholar 

  • Lee J-Y, Chen H-Y, Hsu C-C, Wu C-C (2007) Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution. Sens Actuators A Phys 137(1):185–191

    Article  Google Scholar 

  • Lee J-I, Huang X, Chu P (2009) Nanoprecision MEMS capacitive sensor for linear and rotational positioning. J Microelectromech Syst 18(3):660–670

    Article  Google Scholar 

  • Lee S-C, Peters RD (2009) Nanoposition sensors with superior linear response to position and unlimited travel ranges. Rev Sci Instrum 80(4):045109

    Article  Google Scholar 

  • Li Q, Ding F (2005) Novel displacement eddy current sensor with temperature compensation for electrohydraulic valves. Sens Actuators A Phys 122(1):83–87

    Article  Google Scholar 

  • Lu T-F, Handley D, Yong YK (2004) Position control of a 3 dof compliant micro-motion stage. In: Proceedings control, automation, robotics and vision conference, vol 2, pp 278–1274

    Google Scholar 

  • Maess J, Fleming AJ, Allgöwer F (2008) Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element models. Rev Sci Instrum 79:015105

    Google Scholar 

  • Merry R, Uyanik M, van de Molengraft R, Koops R, van Veghel M, Steinbuch M (2009) Identification, control and hysteresis compensation of a 3 DOF metrological AFM. Asian J Control 11(2):130–143

    Article  Google Scholar 

  • Merry R, Maassen M, van de Molengraft M, van de Wouw N, Steinbuch M (2011) Modeling and waveform optimization of a nano-motion piezo stage. IEEE/ASME Trans Mechatron 16(4):615–626

    Article  Google Scholar 

  • Messenger R, Aten Q, McLain T, Howell L (2009) Piezoresistive feedback control of a mems thermal actuator. J Microelectromech Syst 18(6):1267–1278

    Article  Google Scholar 

  • Michellod Y, Mullhaupt P, Gillet D (2006) Strategy for the control of a dual-stage nano-positioning system with a single metrology. In: Proceedings on robotics, automation and mechatronics, pp 1–8, June 2006

    Google Scholar 

  • Mishra S, Coaplen J, Tomizuka M (2007) Precision positioning of wafer scanners: segmented iterative learning control for nonrepetitive disturbances. IEEE Control Syst 27(4):20–25

    Article  Google Scholar 

  • Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London

    Google Scholar 

  • Nyce DS (2004) Linear position sensors: theory and application. Wiley, Hoboken

    Google Scholar 

  • Pantazi A, Sebastian A, Cherubini G, Lantz M, Pozidis H, Rothuizen H, Eleftheriou E (2007) Control of mems-based scanning-probe data-storage devices. IEEE Trans Control Syst Technol 15(5):824–841

    Article  Google Scholar 

  • Parkin S, Jiang X, Kaiser C, Panchula A, Roche K, Samant M (2003) Magnetically engineered spintronic sensors and memory. Proc IEEE 91(5):661–680

    Article  Google Scholar 

  • Picco LM, Bozec L, Ulcinas A, Engledew DJ, Antognozzi M, Horton M, Miles MJ (2007) Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4):044030(1–4)

    Google Scholar 

  • Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Springer, Heidelberg

    Google Scholar 

  • Proksch R, Cleveland J Bocek D (2007) Linear variable differential transformers for high precision position measurements. US Patent 7,262,592, 2007

    Google Scholar 

  • Roach SD (1998) Designing and building an eddy current position sensor. Sensors, Sept 1998. http://www.sensorsmag.com/sensors/electric-magnetic/designing-and-building-eddy-current-position-sensor-772

  • Sahoo DR, Sebastian A, Häberle W, Pozidis H, Eleftheriou E (2011) Scanning probe microscopy based on magnetoresistive sensing. Nanotechnology 22(14):145501

    Article  Google Scholar 

  • Salapaka SM, Salapaka MV (2008) Scanning probe microscopy. IEEE Control Syst Mag 28(2):65–83

    Article  MathSciNet  Google Scholar 

  • Schitter G, Stark RW, Stemmer A (2002) Sensors for closed-loop piezo control: strain gauges versus optical sensors. Meas Sci Technol 13:N47–N48

    Google Scholar 

  • Schitter G, Ã…ström KJ, DeMartini BE, Thurner PJ, Turner KL, Hansma PK (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst Technol 15(5):906–915

    Article  Google Scholar 

  • Schitter G, Thurner PJ, Hansma PK (2008) Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 18(5–6):282–288

    Article  Google Scholar 

  • Sebastian A, Pantazi A, Pozidis H, Elefthriou E (2008) Nanopositioning for probe-based data storage. IEEE Control Syst Mag 28(4):26–35

    Article  MathSciNet  Google Scholar 

  • Sebastian A, Wiesmann D (2008) Modeling and experimental identification of silicon microheater dynamics: a systems approach. J Microelectromech Syst 17(4):911–920

    Article  Google Scholar 

  • Sebastian A, Pantazi A (2012) Nanopositioning with multiple sensors: a case study in data storage. IEEE Trans Control Syst Technol 20(2):382–394

    Article  Google Scholar 

  • Shan Y, Speich J, Leang K (2008) Low-cost IR reflective sensors for submicrolevel position measurement and control. Mechatronics IEEE/ASME Trans 13(6):700–709

    Article  Google Scholar 

  • Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11:246–257

    Article  Google Scholar 

  • Sirohi RS (2009) Optical methods of measurement: wholefield techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  • Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49

    Article  Google Scholar 

  • Sommargren GE (1986) A new laser measurement system for precision metrology. In: Proceedings of precision engineering conference, Dallas, Nov 1986

    Google Scholar 

  • Tseng AA (ed) (2008) Nanofabrication: fundamentals and applications. World Scientific, Singapore

    Google Scholar 

  • Tseng AA, Jou S, Notargiacomo A, Chen TP (2008) Recent developments in tip-based nanofabrication and its roadmap. J Nanosci Nanotechnol 8(5):2167–2186

    Article  Google Scholar 

  • Vicary JA, Miles MJ (2008) Pushing the boundaries of local oxidation nanolithography: short timescales and high speeds. Ultramicroscopy 108(10):1120–1123

    Article  Google Scholar 

  • Yong YK, Ahmed B, Moheimani SOR (2010) Atomic force microscopy with a 12-electrode piezoelectric tube scanner. Rev Sci Instrum 81(1–10):033701

    Google Scholar 

  • Yong YK, Fleming AJ, Moheimani SOR (2013) A novel piezoelectric strain sensor for simultaneous damping and tracking control of a high-speed nanopositioner. IEEE/ASME Trans Mechatron 18(3):1113–1121

    Google Scholar 

  • Zheng J, Salton A, Fu M (2011) Design and control of a rotary dual-stage actuator positioning system. Mechatronics 21(6):1003–1012

    Article  Google Scholar 

  • Zhu YK, Moheimani SOR, Yuce MR (2011) Simultaneous capacitive and electrothermal position sensing in a micromachined nanopositioner. Electron Device Lett 32(8):1146–1148

    Google Scholar 

  • Zhu Y, Bazaei A, Moheimani SOR, Yuce M (2011) Design, modeling and control of a micromachined nanopositioner with integrated electrothermal actuation and sensing. IEEE/ASME J Microelectromech Syst 20(3):711–719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fleming .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fleming, A.J., Leang, K.K. (2014). Position Sensors. In: Design, Modeling and Control of Nanopositioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06617-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06617-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06616-5

  • Online ISBN: 978-3-319-06617-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics