Skip to main content

Impacts of Climate Change on Agriculture Water Management: Application of an Integrated Hydrological-Economic Modelling Tool in a Semi-Arid Region

  • Chapter
  • First Online:
Agricultural Cooperative Management and Policy

Part of the book series: Cooperative Management ((COMA))

Abstract

An integrated hydrological-economic modelling tool—applied to the Apulia region (southern Italy)—is proposed to define water balance components and water use in the agricultural sector. The hydrological model allows assessing the crop irrigation requirements and the water availability, expressed in terms of river flow, groundwater recharge and abstraction, while the integration with the economic model allows simulating the real farmers’ decision process in response to any changes both in the constraints and in the boundary conditions. The tool provides a comprehensive information framework including water balance components, crop irrigation requirements, farmers’ choices in terms of land use and irrigation techniques, economic results (costs and incomes), and environmental impacts. Climate, land cover and soil datasets have been implemented as thematic maps into a GIS-based model, and integrated with the main economic parameters at the farm and crop level. Future scenarios of climate change have been simulated and their impacts on water balance taken into account. The aim of the results is optimizing the use of water resources and addressing the policies for an efficient water management under severe drought conditions that are likely to occur in the region according to climate change projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Eto is the evapotranspiration rate from a reference surface, a hypothetical grass reference crop with specific characteristics, not short of water. In the present study, it has been calculated using the modified version of the Hargreaves–Samani equation (Razieia and Pereira 2013):

    $$ {\text{ETo}} = 0.0135 \cdot k_{Rs} \cdot \frac{Ra}{\lambda }\sqrt {\left( {T_{\hbox{max} } - T_{\hbox{min} } } \right)} \cdot \left( {T + 17.8} \right) $$
    (11.7)

    where Ra is the extraterrestrial radiation, and \( \lambda \) is the latent heat of vaporization (MJ kg-1) for the mean air temperature T (°C), that is commonly assumed equal to 2.45 MJ kg-1. 0.0135 is a factor for conversion from American to the international system of units and kRs is the radiation adjustment coefficient, commonly equal to 0.17 (Samani 2004).

  2. 2.

    A global high-resolution model is a tool used for modelling climate on a global scale.

References

  • Ahrends, H., Mast, M., Rodgers, Ch., & Kunstmann, H. (2008). Coupled hydrological-economic modelling for optimised irrigated cultivation in a semi-arid catchment of West Africa. Environmental Modelling and Software, 23, 385–395.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. Food and Agricultural Organization of the United Nations, Irrigation and Drainage Paper 56, FAO, Rome, p. 300.

    Google Scholar 

  • Arfini, F., Donati, M. (2008). Health Check e efficienza delle aziende agricole: una valutazione comparativa su quattro regioni agricole europee. XLV Convegno Annuale SIDEA, Portici, 7–9 settembre 2006.

    Google Scholar 

  • Barthel, R., Reichenau, T. G., Krimly, T., Dabbert, S., Schneider, K., & Mauser, W. (2012). Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resources Management, 26, 1929–1951.

    Article  Google Scholar 

  • Blanco Fonseca, M., & Iglesias Martinez, E. (2005). Modeling new EU agricultural policies: Global guidelines, local strategies. New policies and institutions for European Agriculture, 80th EAAE Seminar. Ghent, 24–26 September.

    Google Scholar 

  • Blanco Fonseca, M. (2007). Advanced modeling tools for integrated assessment of water and agricultural policies. Water and Sustainability Development in the Mediterranean. 3rd Regional Workshop on water and sustainable development in the Mediterranean, Zaragozza 19–21 March, p. 10.

    Google Scholar 

  • Borresh, R., Kavallari, A., & Schmitz, P. M. (2005). CAP Reform and the Mediterranean EU-Member States, Paper presented at 80th EAAE Seminar.

    Google Scholar 

  • Brouwer, R., & Hofkes, M. (2008). Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecological Economics, 66, 16–22.

    Article  Google Scholar 

  • Buisson, G. (2005). Etude sur les effets de la réforme de la PAC de juin 2003 sur la consommation d’eau par l’agriculture. Document de travail série Etudes, N(05 E06. Direction des études économiques et de l’évaluation environmentale du Ministère de l’écologie et du développement durable.

    Google Scholar 

  • Calow, R., Bonsor, H., Jones, L., O’Meally, S., MacDonald, A., & Kaur, N. (2011). Climate change, water resources and WASH—A scoping study. Natural Environment Research Council—British Geological Survey (BGS), p. 58.

    Google Scholar 

  • Calow, R. C., MacDonald, A. M., Nicol, A. L., & Robins, N. S. (2010). Ground water security and drought in Africa: Linking availability, access and demand. Ground Water, 48(2), 246–256.

    Article  Google Scholar 

  • Carpenter, S. R., Pingali, P. L., Bennet, E. M., & Zurek, M. B. (2005). Ecosystems and human wellbeing: Scenarios (vol. 2). Findings of the Scenarios Working Group of the Millennium Ecosystem Assessment—United Nations Environment Programme (UNEP), p. 560.

    Google Scholar 

  • Carter, R. C., & Parker, A. (2009). Climate change, population trends and groundwater in Africa. Hydrological Sciences Journal 54(4), Special Issue, 676–689.

    Google Scholar 

  • Celico, P. (1986). Prospezioni Idrogeologiche. Ed. Liguori, Napoli, vol. I–II.

    Google Scholar 

  • Connolly, R. D. (1998). Modelling effects of soil structure on the water balance of soil-crop systems: A review. Soil and Tillage Research, 48, 1–19.

    Article  Google Scholar 

  • Darwin, R., Tsigas, M., Lewandrowski, J., & Raneses, A. (1995). World agriculture and climate change: Economic adaptations. Natural Resources and Environment Division, Economic Research Service, U.S. Department of Agriculture. Agricultural Economic Report No. 703, p. 86.

    Google Scholar 

  • De Girolamo, A. M., Limoni, P. P., Portoghese, I., & Vurro, M. (2002). Il bilancio idrogeologico delle idrostrutture pugliesi. Sovrasfruttamento e criteri di gestione. L’Acqua, 3, 33–45.

    Google Scholar 

  • Dono, G., Cortignani, R., Giraldo, L., Doro, L., Ledda, L., Pasqui, M., & Roggero, P. P. (2012). Evaluating productive and economic impacts of climate change variability on the farm sector of an irrigated Mediterranean area. New challenges for EU agricultural sector and rural areas. Which role for public policy? 126th EAAE Seminar, 27–29th of June, Capri, Italy.

    Google Scholar 

  • Dono, G., Marongiu, S., Severini, S., Sistu, G., & Strazzera, E. (2008). Studio sulla gestione sostenibile delle risorse idriche: analisi dei modelli di consumo per usi irrigui e civili. Ricerca Integrata per l’Applicazione di tecnologie e processi innovative per la lotta alla DEsertificazione (RIADE), p. 257.

    Google Scholar 

  • Dooge, J. C. I. (1977). Problems and methods of rainfall-runoff modelling. In T. A. Ciriani, U. Maione, & J. R. Wallis (Eds.), Mathematical models for surface water hydrology (pp. 71–108). New York: Wiley.

    Google Scholar 

  • Doorenbos, J., Plusje, J. M. G. A., Kassam, A. H., Branscheid, V., & Bentvelsen, C. L. M. (1986). Yield response to water. Food and Agriculture Organization of the United Nations (FAO), Irrigation and Drainage Papers 33, 192.

    Google Scholar 

  • El Chami, D., Scardigno, A., & Malorgio, G. (2011). Impacts of combined technical and economic measures on water saving in agriculture under water availability uncertainty. Journal of Water Resources Management, 25(14), 3911–3929.

    Article  Google Scholar 

  • Ferchichi, A. (2009). Climate variability over Apulia region: A pluviothermometric base assessment of the period 1950–2003. Ph.D. Thesis, University of Basilicata, p. 139.

    Google Scholar 

  • FAO. (2010). Climate-smart agriculture policies, practices and financing for food security, adaptation and mitigation. Food and Agriculture Organization of the United Nations (FAO), p. 41.

    Google Scholar 

  • Frede, H.-G., Bach, M., Fohrer, N., & Breuer, L. (2002). Interdisciplinary modeling and the significance of soil functions. Journal of Plant Nutrition and Soil Science, 165(4), 460–467.

    Article  Google Scholar 

  • Gillig, D., McCarl, B. A., & Boadu, F. (2001). An economic, hydrologic, and environmental assessment of water management alternative plans for the South Central Texas region. Journal of Agricultural and Applied Economics, 33(1), 59–78.

    Google Scholar 

  • Gómez-Limón, J. A., & Berbel, J. (2000). Multi-criteria analysis of derived water demand functions: A Spanish case study. Agricultural Systems, 63, 49–72.

    Article  Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., et al. (1988). Global climate changes as forecasted by the Goddard Institute for Space Studies Three-Dimensional Model. Journal of Geophysical Research, 93(D8), 9341–9364.

    Article  Google Scholar 

  • Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375, 627–643.

    Article  Google Scholar 

  • Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhitri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the Unites States of America (PNAS), 104(50), 19691–19696.

    Article  Google Scholar 

  • Hunter, P. E., MacDonald, A. M., & Carter, R. C. (2010). Water supply and health. PLOS Medicine, 7(11), 1–9.

    Article  Google Scholar 

  • ISTAT. (2007). Survey on agricultural holding structure and output. Italian National Institute for Statistics (Istat). Retrieved March 2013, from http://www.istat.it/agricoltura/datiagri/coltivazioni.

  • Janssen, S., Louhichi, K., Kanellopoulos, A., Zander, P., Flichman, G., Hengsdijk, H., et al. (2010). A generic bio-economic farm model for environmental and economic assessment of agricultural systems. Environmental Management, 46(6), 862–877.

    Article  Google Scholar 

  • Janssen, S. J. C., & Van Ittersum, M. K. (2007). Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agricultural Systems, 94(2), 622–636.

    Article  Google Scholar 

  • Lamaddalena, N., Caliandro, A., Daccache, A., D’Agostino, D. R., Scardigno, A., & De Santis, S. (2008). Riorientamenti produttivi del territorio agricolo pugliese per uno sviluppo rurale sostenibile. Regione Puglia and CIHEAM-IAMB, p. 93. ISBN: 2-85352-395-0.

    Google Scholar 

  • Lanini, S., Courtois, N., Giraud, F., Petit, V., & Rinaudo, J. D. (2004). Socio hydrosystem modelling for integrated water-resources management—the Hérault catchment case study, southern France. Environmental Modelling and Software, 19(11), 1011–1019.

    Article  Google Scholar 

  • Louhichi, K., Kanellopoulos, A., Janssen, S., Flichman, G., Blanco, M., Hengsdijk, H., et al. (2010). FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agricultural Systems, 103, 585–597.

    Article  Google Scholar 

  • Madec, G., Delecluse, P., Imbard, M., & Levy, C. (1998). OPA 8.1 Ocean General Circulation Model reference manual. Institut Pierre-Simon Laplace Internal Report, 11, p. 91.

    Google Scholar 

  • Marchand, F. L., Buysse, J., Campens, V., Claeys, D., Fernagut, B., Lauwers, L., Vander Straeten, B., & Van Huylenbroeck, G. (2008). Effects of a flat rate introduction: Shifts in farm activity and impact on farmers’ income, 107th EAAE seminar, January 29th–February 1st, Sevilla.

    Google Scholar 

  • Noel, J. E., & Howitt, R. E. (1982). Conjunctive multi-basin management an optimal control approach. Water Resources Research, 18(4), 753–763.

    Article  Google Scholar 

  • Pachauri, R. K., & Reisinger, A. (Eds.). (2007). IPCC climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), p. 104.

    Google Scholar 

  • Palatella, L., Miglietta, M. M., Paradisi, P., & Lionello, P. (2010). Climate change assessment for Mediterranean agricultural areas by statistical downscaling. Natural Hazards and Earth System Sciences, 10, 1647–1661.

    Article  Google Scholar 

  • Parry, M., Canziani, O., Palutikof, J., Van Der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), p. 976.

    Google Scholar 

  • Polemio, M., & Limoni, P. P. (2001). L’evoluzione dell’inquinamento salino delle acque sotterranee della Murgia e del Salento. Memorie della Società Geologica Italiana, 56, 327–331.

    Google Scholar 

  • Razieia, T., & Pereira, L. S. (2013). Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, 121, 1–18.

    Article  Google Scholar 

  • Roeckner, E., Bauml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., & Tompkins, A. (2003). The atmospheric general circulation model ECHAM5, Part I. Max-Planck-Institut fuer Meteorologie Report N. 349, ISSN 0937-1060, p. 127.

    Google Scholar 

  • Samani, Z. (2004). Discussion of history and evaluation of Hargreaves evapotranspiration equation by George H. Hargreaves and Richard G. Allen. Journal of Irrigation and Drainage Engineering, 130(5), 447–448.

    Article  Google Scholar 

  • Saraiva, J. P., & Pinheiro, A. C. (2007). A multi-criteria approach for irrigation water management. Agricultural Economics Review, 8(1), 64–76.

    Google Scholar 

  • Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal, 50, 1031–1036.

    Article  Google Scholar 

  • Scardigno, A., & Viaggi, D. (2007). Water demand management in the Mediterranean: Progress and Policies. Water and Sustainability Development in the Mediterranean. 3rd Regional Workshop on water and sustainable development in the Mediterranean, Zaragozza 19–21 March, p. 24.

    Google Scholar 

  • Schlesinger, M. E., & Zhao, A. C. (1989). Seasonal climatic changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/Mixed-Layer Ocean Model. Journal of Climate, 2(5), 459–495.

    Article  Google Scholar 

  • Steduto, P., & Todorovic, M. (2001). Agro-ecological characterization of the Apulia region: Methodology and experience. In P. Zdruli, P. Steduto, C. Lacirignola, & L. Montanarella (Eds.), Soil resources in Southern and Eastern Mediterranean Countries (vol. 34, pp. 143–158). Options Méditerranéennes, Series B: Studies and Research. Bari: CIHEAM.

    Google Scholar 

  • Steduto, P., Todorovic, M., Caliandro, A., Catalano, M., Quaglino, E., Rusco, E., Stellati, M., Nerilli, E., De Santis, S., Madaro, A., Pezzato, A., Filomeno, O., D’Amico, O., Fanelli, D., & Cainarca, C. (1999). Agro-ecological characterization of the Apulia region: GIS applications and modelling. In: A. Musy, L. S. Pereira, & M. Fritsch (Eds.), Emerging technologies for sustainable land use and water management. 2nd Inter-Regional Conference on Environment-Water, Lausanne (Switzerland), 1–3 September 1999, Ppur. European Society of Agricultural Engineering (p. 13). CD ROM publications.

    Google Scholar 

  • USDA—Soil Conservation Service. (1967). Irrigation water requirements. Technical Release, 21. Washington, D.C.

    Google Scholar 

  • US Soil Conservation Service—SCS. (1972). National engineering handbook (p. 593). Washington, DC: Agriculture USDA.

    Google Scholar 

  • Varela-Ortega, C., Blanco-Gutiérrez, I., Swartz, C. H., & Downing, T. E. (2011). Balancing groundwater conservation and rural livelihoods under water and climate uncertainties: An integrated hydro-economic modelling framework. Global Environmental Change, 21, 604–619.

    Article  Google Scholar 

  • CIRCE—Climate change and impact research: The Mediterranean environment www.circeproject.eu.

  • Young, G. J., Dooge, J. C. I., & Rodda, J. C. (1994). Global water resource issues (p. 216). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French Ministry for Ecology, Sustainable Development, Transport and Housing, who funded this research in the framework of the CLIMAWARE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Scardigno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scardigno, A., D’Agostino, D., El Chami, D., Lamaddalena, N. (2014). Impacts of Climate Change on Agriculture Water Management: Application of an Integrated Hydrological-Economic Modelling Tool in a Semi-Arid Region. In: Zopounidis, C., Kalogeras, N., Mattas, K., van Dijk, G., Baourakis, G. (eds) Agricultural Cooperative Management and Policy. Cooperative Management. Springer, Cham. https://doi.org/10.1007/978-3-319-06635-6_11

Download citation

Publish with us

Policies and ethics