Skip to main content

Ambient Assisted Living Tools for a Sustanaible Aging Society

Existing Solutions and Future Challenges

  • Chapter
Resource Management in Mobile Computing Environments

Abstract

In the last decade there has been a huge increase in Ambient Assisted Living (AAL) technologies that try to address the continuous growing aging population. These demographic changes have led to new challenges for the society, which has to provide assistance to old people while promoting other aspects such as their autonomy and independence at home, as well as supporting their common daily life activities. The R&D community has been well-aware of these changes and over the last few years has come up with new AAL approaches. This chapter discusses the changes that the new demographic scenario implies and the major forces that shaped it. We will analyze the needs and limitations that the elderly have to face in their everyday lives, and why new AAL technologies are a viable solution. The major scientific results will be described along with their derived commercial products. Similarly, a complete analysis of the companies’ effort, progress and products on this area will be presented. Finally, the future research paths will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization, http://www.who.int/topics/ageing/en/index.html (last access: March 05, 2013)

  2. European Commission Report: Active ageing and solidarity between generations: A statistical portrait of the European Union 2012, 2012 Edition (2012)

    Google Scholar 

  3. Department of Economic and Social Affairs of the United Nations, http://esa.un.org/wpp/unpp/panel_population.htm (last access May 02, 2013)

  4. U.S Department of Health and Human Services, http://www.hhs.gov/ (last access May 02, 2013)

  5. U.S. Department of Health and Human Services: A Profile of Older Americans (2011)

    Google Scholar 

  6. European Commission, Long Term Care for the elderly: Provisions and providers in 33 European countries (2012)

    Google Scholar 

  7. World Health Organization, http://www.who.int/mediacentre/factsheets/fs352/en/ (last access May 02, 2013)

  8. Ambient Assisted Living Joint Programme (AAL JP), http://www.aal-europe.eu/ (last access May 02, 2013)

  9. Holmes, J., Powell-Griner, E., et al.: Aging Differently: Physical Limitations Among Adults Aged. NCHS Data Brief, No. 20 (July 2009)

    Google Scholar 

  10. Kaplan, G.A.: Maintenance of functioning in the elderly. Annals of Epidemiology 2(6), 823–834 (1992)

    Article  Google Scholar 

  11. Chen, Y.A., Thomas, M.: Vision screening in the elderly: current literature and recommendations. University of Toronto Medical Journal 87(3), 166–169 (2010)

    Article  Google Scholar 

  12. Centers for Disease Control and Prevention (CDC), http://www.cdc.gov/healthliteracy/developmaterials/audiences/olderadults/understanding-challenges.html (last access: May 03, 2013)

  13. CBS NEWS, http://www.cbsnews.com/8301-204_162-57568046/alzheimers-rates-expected-to-triple-by-2050-because-of-aging-baby-boomers/ (last access: May 03, 2013)

  14. Paterson, D., Govindasamy, D., Vidmar, M., et al.: Longitudinal study of determinants of dependence in an elderly population. J. Am. Geriatr. Soc. 52, 1632–1638 (2004)

    Article  Google Scholar 

  15. Huang, Y., et al.: Physical fitness, physical activity, and functional limitation in adults aged 40 and older. Medicine and Science in Sports and Exercise 30(9), 1430 (1998)

    Google Scholar 

  16. Rogers, W.A., et al.: Functional limitations to daily living tasks in the aged: A focus group analysis. Human Factors: The Journal of the Human Factors and Ergonomics Society 40(1), 111–125 (1998)

    Article  Google Scholar 

  17. J.: B Waldner. adapté de “Nano-informatique et intelligence ambiante”. Hermes Science Publishing (2007)

    Google Scholar 

  18. Wikipedia (Evolution computer 1960-2010 image), http://en.wikipedia.org/wiki/File:Evolution_computer_1960-2010-fr.jpg (last access: September 23, 2013)

  19. Jara, A.J., Zamora, M.A., Skarmeta, A.F.G.: An internet of things-based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 15, 431–440 (2011)

    Article  Google Scholar 

  20. Pitta, F., Troosters, T., Probst, V.S., et al.: Quantifying Physical Activity in Daily Life with Questionnaires and Motion Sensors in COPD. European Respiratory Journal 27(5), 1040–1055 (2006)

    Article  Google Scholar 

  21. Leonhardt, S.: Personal Healthcare Devices. In: Mukherjee, S., et al. (eds.) AmIware: Hardware Technology Drivers of Ambient Intelligence, pp. 349–370. Springer, Dordrecht (2006)

    Google Scholar 

  22. Harmo, P., Taipalus, T., Knuuttila, J., et al.: Needs and solutions—Home automation and service robots for the elderly and disabled. In: Proc. Int. Robot. Syst. Int. Conf., pp. 3201–3206 (2005)

    Google Scholar 

  23. Raytron, “Chapit” (2011)

    Google Scholar 

  24. Park, H.K., Hong, H.S., Kwon, H.J., et al.: A Nursing Robot System for The Elderly and The Disabled. In: Proc. of the International Workshop on Human-Friendly Welfare Robotic Systems, Daejeon, Korea (2002)

    Google Scholar 

  25. Mukai, T., Hirano, S., Nakashima, H., et al.: Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In: Proc. Intell. Robot. Syst. Int. Conf., pp. 5996–6001 (2010)

    Google Scholar 

  26. Graf, B., Reiser, U., Hagele, M., et al.: Robotic home assistant care-o-bot. In: Proc. Adv. Robot. Social Impacts Workshop 2009, pp. 139–144 (2009)

    Google Scholar 

  27. Xu, Z., Deyle, T., Kemp, C.: 1000 trials: An empirically validated end effector that robustly grasps objects from the floor. In: Proc. Robot. Autom. Int. Conf. 2009, pp. 2160–2167 (2009)

    Google Scholar 

  28. Brose, S., Weber, D., Salatin, B., et al.: The role of assistive robotics in the lives of persons with disability. Amer. J. Phys. Med. Rehabil. 89(6), 509–521 (2010)

    Article  Google Scholar 

  29. Kuindersma, S., Hannigan, E., Ruiken, D., et al.: Dexterous mobility with the uBot-5 mobile manipulator. In: Proc. Int. Conf. Adv. Robot., pp. 1–7 (June 2009)

    Google Scholar 

  30. Pollack, M.E., et al.: Pearl: A mobile robotic assistant for the elderly. In: AAAI Workshop on Automation as Eldercare, pp. 85–91 (2002)

    Google Scholar 

  31. Wada, K., Ikeda, Y., Inoue, K., et al.: Development and preliminary evaluation of a caregiver’s manual for robot therapy using the therapeutic seal robot Paro. In: Proc. IEEE ROMAN, pp. 533–538 (September 2010)

    Google Scholar 

  32. Georgia Institute of Technology, From Research to Market: Smart Shirt Moves. Georgia Institute of Technology, GA, USA (2004)

    Google Scholar 

  33. Lifeshirt by Vivometrics, http://vivonoetics.com/products/sensors/lifeshirt/ (last access: May 8, 2013)

  34. Hexoskin, http://www.hexoskin.com/en (last access: May 08, 2013)

  35. Equivital, http://www.equivital.co.uk/ (last access: May 08, 2013)

  36. Actibelt (Image published with permission of Martin Daumer, SLCMSR-The Human Motion Institute & Trium), http://www.actibelt.com/ (last access: May 08, 2013)

  37. Linti, C., et al.: Sensory baby vest for the monitoring of infants. In: International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2006, pp. 3–137. IEEE (2006)

    Google Scholar 

  38. Wahr, J., Tremper, K.: Non-Invasive Oxygen Monitoring Techniques. Critical Care Clinics 11(1), 199–217 (1995)

    Google Scholar 

  39. Tamada, J.A., Lesho, M., Tierney, M.J.: Keeping Watch on Glucose: New Monitors Help Fight the Long-Term Complications of Diabetes. IEEE Spectrum 39(4), 52–57 (2002)

    Article  Google Scholar 

  40. Asada, H.H., et al.: Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Engineering in Medicine and Biology Magazine 22(3), 28–40 (2003)

    Article  MathSciNet  Google Scholar 

  41. Starner, T., Auxier, J., Ashbrook, D., et al.: The Gesture Pendant: A Self-Illuminating, Wearable, Infrared Computer Vision System for Home Automation Control and Medical Monitoring. In: Proceedings of the IEEE International Symposium on Wearable Computing, pp. 87–94. IEEE Press (2000)

    Google Scholar 

  42. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  43. Kaushik, A.R., Celler, B.G.: Characterization of PIR detector for monitoring occupancy patterns and functional health status of elderly people living alone at home. Technol. Health Care 15(4), 273–288 (2007)

    Google Scholar 

  44. Adami, A., Pavel, M., Hayes, T., et al.: Detection of movement in bed using unob-trusive load cell sensors. IEEE Trans. Inf. Technol. Biomed. 14(2), 481–490 (2010)

    Article  Google Scholar 

  45. Nishida, Y., Hori, T., Suehiro, T., et al.: Sensorized environment for self-communication based on observation of daily human behavior. In: Proc. Int. Robot. Syst. Int. Conf., pp. 1364–1372 (2000)

    Google Scholar 

  46. Ferguson, G.T.: Have Your Objects Call My Objects. Harvard Business Review 80(6), 138–143 (2003)

    Google Scholar 

  47. Park, S.H., Won, S.H., et al.: Smart Home - Digitally Engineered Domestic Life. Personal Ubiquitous Computing 7(3+4), 189–196 (2003)

    Article  Google Scholar 

  48. Legon, J.: ‘Smart Sofa’ Aimed at Couch Potatoes. In: CNN (September 23, 2003)

    Google Scholar 

  49. Capone, A., Barros, M., Hrasnica, H., et al.: A New Architecture for Reduction of Energy Consumption of Home Appliances. In: TOWARDS eENVIRONMENT, European Conference of the Czech Presidency of the Council of the EU (2009)

    Google Scholar 

  50. eDIANA (Embedded Systems for Energy Efficient Buildings), http://s15723044.onlinehome-server.info/artemise/ (last access: May 09, 2013)

  51. Yamazaki, T.: Beyond the smart home. In: International Conference on Hybrid Information Technology, ICHIT 2006, pp. 350–355. IEEE (2006)

    Google Scholar 

  52. Dishman, E.: Inventing wellness systems for aging in place. Computer 37(5), 34–41 (2004)

    Article  Google Scholar 

  53. Chan, M., Campo, E., Estève, D.: Assessment of activity of elderly people using a home monitoring system. International Journal of Rehabilitation Research 28(1), 69–76 (2005)

    Article  Google Scholar 

  54. CO-LIVING project, http://www.project-coliving.eu/ (last access: May 09, 2013)

  55. Van Kasteren, T., Englebienne, G., et al.: Recognizing activities in multiple contexts using transfer learning. In: AAAI AI in Eldercare Symposium (2008)

    Google Scholar 

  56. Euzenat, J., et al.: Dynamic context management for pervasive applications. Knowledge Engineering Review 23(1), 21–50 (2008)

    Article  Google Scholar 

  57. Gu, T., Hung, K.P., Da Qing, Z.: A service-oriented middleware for building context-aware services. Journal of Network and Computer Applications 28(1), 1–18 (2005)

    Article  Google Scholar 

  58. Brdiczka, O., Crowley, J.L., Reignier, P.: Learning situation models for providing context-aware services. In: Stephanidis, C. (ed.) Universal Access in HCI (Part II), HCII 2007. LNCS, vol. 4555, pp. 23–32. Springer, Heidelberg (2007)

    Google Scholar 

  59. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  60. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of context-enabled applications. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: the CHI is the Limit. ACM (1999)

    Google Scholar 

  61. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop Proceedings (2004)

    Google Scholar 

  62. Nieto, I., Botía, J.A., Gómez-Skarmeta, A.F.: Information and hybrid architecture model of the OCP contextual information management system. Journal of Universal Computer Science 12(3), 357–366 (2006)

    Google Scholar 

  63. Chen, H., et al.: Intelligent agents meet the semantic web in smart spaces. IEEE Internet Computing 8(6), 69–79 (2004)

    Article  Google Scholar 

  64. Flury, T., Privat, G., Ramparany, F.: OWL-based location ontology for context-aware services. In: Proceedings of the Artificial Intelligence in Mobile Systems (AIMS 2004), pp. 52–57 (2004)

    Google Scholar 

  65. Sadeh, N., Gandon, F.: Using semantic web services for context-aware mobile applications (2004)

    Google Scholar 

  66. Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-based spatial query expansion in information retrieval. In: Meersman, R. (ed.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1466–1482. Springer, Heidelberg (2005)

    Google Scholar 

  67. Ngoc, K.A.P., Lee, Y.-K., Lee, S.-Y.: OWL-based user preference and behavior routine ontology for ubiquitous system. In: Meersman, R. (ed.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1615–1622. Springer, Heidelberg (2005)

    Google Scholar 

  68. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data based on MDL principle. Machine Learning 58(2-3), 269–300 (2005)

    Article  MATH  Google Scholar 

  69. Barger, T.S., Brown, D.E., Alwan, M.: Health-status monitoring through analysis of behavioral patterns. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 35(1), 22–27 (2005)

    Article  Google Scholar 

  70. Mozery, M.C., et al.: The neural network house: An overview (1999)

    Google Scholar 

  71. Maurer, U., et al.: Activity recognition and monitoring using multiple sensors on different body positions. In: International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2006. IEEE (2006)

    Google Scholar 

  72. Liao, L.: Location-based activity recognition. Diss. University of Washington (2006)

    Google Scholar 

  73. Van Kasteren, T., Krose, B.: Bayesian activity recognition in residence for elders, pp. 209–212 (2007)

    Google Scholar 

  74. Zhao, L., et al.: Motif discovery and feature selection for crf-based activity recognition. In: 2010 20th International Conference on Pattern Recognition (ICPR). IEEE (2010)

    Google Scholar 

  75. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  76. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: A review. ACM Computing Surveys (CSUR) 43(3), 16 (2011)

    Article  Google Scholar 

  77. Ni, L.M., et al.: LANDMARC: indoor location sensing using active RFID. Wireless Networks 10(6), 701–710 (2004)

    Article  Google Scholar 

  78. Hightower, J., et al.: Design and calibration of the spoton ad-hoc location sensing system (August 2001) (unpublished)

    Google Scholar 

  79. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identification and tracking. In: CHI 2000 Extended Abstracts on Human Factors in Computing Systems. ACM (2000)

    Google Scholar 

  80. Priyantha, N.B., Chakraborty, A., et al.: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. ACM (2000)

    Google Scholar 

  81. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: Proceedings of the IEEE Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2000, vol. 2, IEEE (2000)

    Google Scholar 

  82. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  83. Perry, M., et al.: Multimodal and ubiquitous computing systems: Supporting independent-living older users. IEEE Transactions on Information Technology in Biomedicine 8(3), 258–270 (2004)

    Article  MathSciNet  Google Scholar 

  84. Franco, C., et al.: Behavioral telemonitoring of the elderly at home: detection of nycthemeral rhythms drifts from location data. In: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA). IEEE (2010)

    Google Scholar 

  85. Aztiria, A., Augusto, J.C., Basagoiti, R., Izaguirre, A.: Accurate Temporal Relationships in Sequences of User Behaviours in Intelligent Environments. In: Augusto, J.C., Corchado, J.M., Novais, P., Analide, C. (eds.) ISAmI 2010. AISC, vol. 72, pp. 19–27. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  86. Mihailidis, A., et al.: The use of an intelligent prompting system for people with dementia. Interactions 14(4), 34–37 (2007)

    Article  Google Scholar 

  87. Pollack, M.E., et al.: Autominder: An intelligent cognitive orthotic system for people with memory impairment. Robotics and Autonomous Systems 44(3), 273–282 (2003)

    Article  MathSciNet  Google Scholar 

  88. Chu, Y., et al.: When did you start doing that thing that you do? Interactive activity recognition and prompting. In: AAAI 2011 Workshop on Artificial Intelligence and Smarter Living: The Conquest of Complexity (2011)

    Google Scholar 

  89. Kamar, E., Horvitz, E.: Jogger: models for context-sensitive reminding. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011 (2011)

    Google Scholar 

  90. Bosch healthcare solutions, http://www.bosch-telehealth.com/en/us/startseite/home.html (last access: May 30, 2013)

  91. Philips Healthcare, http://www.philips.com/about/company/businesses/healthcarehighlights (last access: May 30, 2013)

  92. Intel Healthcare, http://www.intel.com/content/www/us/en/healthcare-it/healthcare-overview.html (last access: May 30, 2013)

  93. Honey well healthcare, http://honeywell.com/Products-Services/Pages/healthcare-medical.aspx (last access: May 30, 2013)

  94. Ambient Assisted Living Joint Programme, http://www.aal-europe.eu/ (last access: May 27, 2013)

  95. The “AMICA” project, http://www.aal-europe.eu/projects/amica/ (last access: 27/05/2013)

  96. The “CAPMOUSE” project, http://www.aal-europe.eu/projects/capmouse/ (last access: May 27, 2013)

  97. The “BANK4ELDER” project, http://www.aal-europe.eu/projects/bank4older/ (last access: May 27, 2013)

  98. The “ASSISTANT” project, http://www.aal-europe.eu/projects/assistant/ (last access: May 27, 2013)

  99. The “E-MOSION” project, http://www.aal-europe.eu/projects/e-mosion/ (last access: May 27, 2013)

  100. The “DOMEO” project, http://www.aal-europe.eu/projects/domeo/ (last access: May 27, 2013)

  101. The “ALIAS” project, http://www.aal-europe.eu/projects/alias/ (last access: May 27, 2013)

  102. DOMEO robot image (Image published with permission of ROBOSOFT), http://www.gerontechnologie.net/nouveau-prototype-pour-kompai-le-robot-domestique-de-teleassistance/311996 (last access: September 23, 2013)

  103. The “ALIAS” project (Image published with permission of TUM-Technische Universität München, MMK-Institute for Human-Machine Communications), http://www.aal-europe.eu/projects/alias/ (last access: May 27, 2013)

  104. The “eCAALYX” project, http://www.aal-europe.eu/projects/ecaalyx/ (last access: May 27, 2013)

  105. The “PAMAP” project, http://www.aal-europe.eu/projects/pamap/ (last access: May 27, 2013)

  106. The “SOFTCARE” project, http://www.aal-europe.eu/projects/softcare/ (last access: May 27, 2013)

  107. The “E-STOCKINGS” project, http://www.aal-europe.eu/projects/e-stocking/ (last access: May 27, 2013)

  108. The “HEALTH@HOME” project, http://www.aal-europe.eu/projects/healthhome/ (last access: May 27, 2013)

  109. The “A2E2” project, http://www.aal-europe.eu/projects/a2e2/ (last access: May 27, 2013)

  110. The “BEDMOND” project, http://www.aal-europe.eu/projects/304/ (last access: May 27, 2013)

  111. The “HOPE” project, http://www.aal-europe.eu/projects/hope/ (last access: May 27, 2013)

  112. The “HOMEdotOLD” project, http://www.aal-europe.eu/projects/homedothold/ (last access: May 27, 2013)

  113. The “CARE@HOME” project, http://www.aal-europe.eu/projects/bank-4-elder/ (last access: May 27, 2013)

  114. Mégret, R., et al.: The IMMED project: wearable video monitoring of people with age dementia. In: Proceedings of the International Conference on Multimedia, pp. 1299–1302. ACM (2010)

    Google Scholar 

  115. Di Rienzo, M., et al.: MagIC system: A new textile-based wearable device for biological signal monitoring. Applicability in daily life and clinical setting. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 7167–7169. IEEE (2005)

    Google Scholar 

  116. Paradiso, R., Loriga, G., Taccini, N.: A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine 9(3), 337–344 (2005)

    Article  Google Scholar 

  117. Jara, A.J., Zamora, M.A., Skarmeta, A.F.: An internet of things—based personal device for diabetes therapy management in ambient assisted living (AAL). Personal and Ubiquitous Computing 15(4), 431–440 (2011)

    Article  Google Scholar 

  118. Jara, A.J., Zamora, M.A., Skarmeta, A.F.: Drug identification and interaction checker based on IoT to minimize adverse drug reactions and improve drug compliance. Personal and Ubiquitous Computing, 1–13 (2012)

    Google Scholar 

  119. Rashidi, P., Cook, D.J.: Keeping the resident in the loop: Adapting the smart home to the user. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(5), 949–959 (2009)

    Article  Google Scholar 

  120. Chen, D., Jie, Y., Howard, D.W.: Towards automatic analysis of social interaction patterns in a nursing home environment from video. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval. ACM (2004)

    Google Scholar 

  121. Hayes, T.L., et al.: Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimer’s and Dementia 4(6), 395–405 (2008)

    Article  Google Scholar 

  122. Abowd, G.D., et al.: The aware home: A living laboratory for technologies for successful aging. In: Proceedings of the AAAI 2002 Workshop “Automation as Caregiver” (2002)

    Google Scholar 

  123. Kientz, J.A., et al.: The georgia tech aware home. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems. ACM (2008)

    Google Scholar 

  124. Elite Care Company, http://www.elitecare.com/ (last access: May 28, 2013)

  125. MIT, House_n, http://architecture.mit.edu/house_n/ (last access: May 30, 2013)

  126. Pollack, M.E., et al.: Pearl: A mobile robotic assistant for the elderly. In: AAAI Workshop on Automation as Eldercare, vol. 2002 (2002)

    Google Scholar 

  127. Alwan, M., et al.: A smart and passive floor-vibration based fall detector for elderly. In: Information and Communication Technologies, ICTTA 2006, 2nd edn., vol. 1. IEEE (2006)

    Google Scholar 

  128. Mukai, T., et al.: Whole-body contact manipulation using tactile information for the nursing-care assistant robot RIBA. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2011)

    Google Scholar 

  129. Watching Recall Support Robot Mamoru: http://www.jsk.t.u-tokyo.ac.jp/research/irt/mamoru.html (last access: May 30, 2013)

  130. The Paro Therapeutic Robot, http://www.parorobots.com/index.asp (last access: May 30, 2013)

  131. Riba robot image (Image provided by RIKEN-TRI Collaboration Center for Human-Interactive Robot Research), http://mentalfloss.com/article/30898/10-robots-very-specific-tasks (last access: September 23, 2013)

  132. Paro robot image Image published with permission of AIST, Japan, http://web.cecs.pdx.edu/~gerry/class/ME370/notes/cases/Case_study_Paro_robot.html (last access: September 23, 2013)

  133. Nambu, M., et al.: An algorithm for the automatic detection of health conditions. IEEE Engineering in Medicine and Biology Magazine 24(4), 38–42 (2005)

    Article  Google Scholar 

  134. Andoh, H., et al.: Home health monitoring system in the sleep. In: SICE 2003 Annual Conference, vol. 2. IEEE (2003)

    Google Scholar 

  135. Masuda, Y., et al.: An unconstrained monitoring system for home rehabilitation. IEEE Engineering in Medicine and Biology Magazine 24(4), 43–47 (2005)

    Article  MathSciNet  Google Scholar 

  136. Shi, G., et al.: Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier. IEEE Sensors Journal 9(5), 495–503 (2009)

    Article  Google Scholar 

  137. Karamshuk, D., Boldrini, C., Conti, M., Passarella, A.: Human mobility models for opportunistic networks. IEEE Communications Magazine 49(12), 157–165 (2011)

    Article  Google Scholar 

  138. Cho, D.-K., et al.: Opportunistic medical monitoring using bluetooth P2P networks. In: 2008 International Symposium on World of Wireless, Mobile and Multimedia Networks, WoWMoM 2008. IEEE (2008)

    Google Scholar 

  139. Lilien, L., et al.: Opportunistic networks: the concept and research challenges in privacy and security. In: Proc. of the WSPWN, pp. 134–147 (2006)

    Google Scholar 

  140. Gyrard, A.: A machine-to-machine architecture to merge semantic sensor measurements. In: Proceedings of the 22nd International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee (2013)

    Google Scholar 

  141. Pfisterer, D., et al.: SPITFIRE: toward a semantic web of things. IEEE Communications Magazine 49(11), 40–48 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés L. Bleda .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bleda, A.L., Maestre, R., Jara, A.J., Skarmeta, A.G. (2014). Ambient Assisted Living Tools for a Sustanaible Aging Society. In: Resource Management in Mobile Computing Environments. Modeling and Optimization in Science and Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-06704-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06704-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06703-2

  • Online ISBN: 978-3-319-06704-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics