Skip to main content

Numerical Detection of Inactive Joints

  • Conference paper
  • First Online:
Advances on Theory and Practice of Robots and Manipulators

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 22))

  • 2094 Accesses

Abstract

Inactive joints are the joints that cannot perform relative motion due to structural limitations in a mechanism. They are usually introduced in order to eliminate redundant constraints. A joint can be inactive in the whole range of the mechanism motion or only in selected configurations. A numerical method of detection of inactive joints is presented. The method is based on multibody system approach and utilizes the constraint Jacobian matrix. The ability to perform relative motion is investigated and inactivity of joints in both regular and singular configurations is discussed. A numerical example is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanding, D.L.: Exact Constraint Machine Design Using Kinematic Principles. ASME Press, New York (1999)

    Google Scholar 

  2. Brouwer, D.M., Boer, S.E., Meijaard, J.P., Aarts, R.G.K.M.: Optimization of release locations for small self-stress large stiffness flexure mechanisms. Mech. Mach. Theory 64, 230–250 (2013). doi:10.1016/j.mechmachtheory.2013.01.007

    Article  Google Scholar 

  3. Olędzki, A.: Basics of Theory of Machines and Mechanisms (in Polish). WNT, Warsaw (1987)

    Google Scholar 

  4. Morecki, A., Oderfeld, J.: Theory of Machines and Mechanisms (in Polish). PWN, Warsaw (1987)

    Google Scholar 

  5. García de Jalon, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Sys. Dyn. 30, 311–341 (2013). doi:10.1007/s11044-013-9358-7

    Article  MATH  Google Scholar 

  6. Song, S.M., Gao, X.: The mobility equation and the solvability of joint forces/torques in dynamic analysis. ASME J. Mech. Des. 114, 257–262 (1992). doi:10.1115/1.2916940

    Article  Google Scholar 

  7. Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Sys. Dyn. 14, 23–46 (2005). doi:10.1007/s11044-005-5967-0

    Article  MATH  MathSciNet  Google Scholar 

  8. Wojtyra, M.: Joint reactions in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44, 2265–2278 (2009). doi:10.1016/j.mechmachtheory.2009.07.008

    Article  MATH  Google Scholar 

  9. Wojtyra, M., Frączek, J.: Comparison of selected methods of handling redundant constraints in multibody systems simulations. ASME J. Comput. Nonlinear Dyn. 8, 021007-1–021007-9 (2013). doi:10.1115/1.4006958

    Google Scholar 

  10. Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011). doi:10.1016/j.mechmachtheory.2010.11.003

    Article  MATH  Google Scholar 

  11. Reshetov, L.N.: Designing of Rational Mechanisms, 2nd edn. Mechanical Engineering, Moscow (1972)

    Google Scholar 

  12. Gogu, G.: Structural Synthesis of Parallel Robots. Part 4: Other Topologies with Two and Three Degrees of Freedom. Springer, Netherlands (2011)

    Google Scholar 

  13. Kong, X., Gosselin, C.M.: Type synthesis of three-degree-of-freedom spherical parallel manipulators. Int. J. Robot. Res. 23, 237–245 (2004). doi:10.1177/0278364904041562

    Article  Google Scholar 

  14. Kong, X., Gosselin, C.M.: Type synthesis of 4-DOF SP-equivalent parallel manipulators: a virtual chain approach. Mech. Mach. Theory 41, 1306–1319 (2006). doi:10.1016/j.mechmachtheory.2006.01.004

    Article  MATH  Google Scholar 

  15. Majou, F., Gosselin, C.M., Wenger, P., Chablat, D.: Parametric stiffness analysis of the orthoglide. Mech. Mach. Theory 42, 296–311 (2007). doi:10.1016/j.mechmachtheory.2006.03.018

    Article  MATH  Google Scholar 

  16. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  17. Yan, H.S., Wu, L.I.: The stationary configurations of planar six-bar kinematic chains. Mech. Mach. Theory 23, 287–293 (1988)

    Article  Google Scholar 

  18. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Centre (Poland) grant no. DEC-2012/07/B/ST8/03993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Wojtyra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wojtyra, M. (2014). Numerical Detection of Inactive Joints. In: Ceccarelli, M., Glazunov, V. (eds) Advances on Theory and Practice of Robots and Manipulators. Mechanisms and Machine Science, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-07058-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07058-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07057-5

  • Online ISBN: 978-3-319-07058-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics