Skip to main content

Design and Experimental Validation of a Hybrid Micro Tele-Manipulation System

  • Conference paper
Artificial Intelligence: Methods and Applications (SETN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Included in the following conference series:

  • 2748 Accesses

Abstract

This paper presents analytical and experimental results on a new hybrid tele-manipulation environment for micro-robot control under non-holonomic constraints. This environment is comprised of a haptic tele-manipulation subsystem (macro-scale motion), and a visual servoing subsystem, (micro-scale motion) under the microscope. The first subsystem includes a 5-dof (degrees of freedom) force feedback mechanism, acting as the master, and a 2-dof micro-robot, acting as the slave. In the second subsystem, a motion controller based on visual feedback drives the micro-robot. The fact that the slave micro-robot is driven by two centrifugal force vibration micro-motors makes the presented tele-manipulation environment exceptional and challenging. The unique characteristics and challenges that arise during the micromanipulation of the specific device are described and analyzed. The developed solutions are presented and discussed. Experiments show that, regardless of the disparity between master and slave, the proposed environment facilitates functional and simple micro-robot control during micromanipulation operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salcudean, S.E., Ku, S., Bell, G.: Performance measurement in scaled teleoperation for microsurgery. In: Troccaz, J., Mösges, R., Grimson, E. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 789–798. Springer, Heidelberg (1997)

    Google Scholar 

  2. Salcudean, S.E., Yan, J.: Towards a Force-Reflecting Motion-Scaling System for Microsurgery. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 1994), San Diego, CA, USA, pp. 2296–2301 (1994)

    Google Scholar 

  3. Salcudean, S.E., Wong, N.M., Hollis, R.L.: Design and Control of a Force-Reflecting Teleoperation System with Magnetically Levitated Master and Wrist. IEEE Trans. on Robotics and Automation 11(6), 844–858 (1995)

    Article  Google Scholar 

  4. Sitti, M., Hashimoto, H.: Tele-Nanorobotics Using Atomic Force Microscope. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Victoria, B.C., Canada, pp. 1739–1746 (1998)

    Google Scholar 

  5. Kwon, D.S., Woo, K.Y., Cho, H.S.: Haptic Control of the Master Hand Controller for a Microsurgical Telerobot System. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 1999), Detroit, Michigan, USA, pp. 1722–1727 (1999)

    Google Scholar 

  6. Ando, N., Ohta, M., Hashimoto, H.: Micro Teleoperation with Haptic Interface. In: Proc. of 2000 IEEE Int. Conf. on Industrial Electronics, Control and Instrumentation (IECON 2000), Nagoya, Japan, pp. 13–18 (2000)

    Google Scholar 

  7. Massie, T., Salisbury, J.K.: The Phantom Haptic Interface: A Device for Probing Virtual Objects. In: Proc. ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago, IL, pp. 295–301 (1994)

    Google Scholar 

  8. Menciassi, A., Eisinberg, A., Carrozza, M.C., Dario, P.: Force Sensing Microinstrument for Measuring Tissue Properties and Pulse in Microsurgery. IEEE/ASME Trans. on Mechatronics 8(1), 10–17 (2003)

    Article  Google Scholar 

  9. Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.: Scaled Teleoperation System for Nano-Scale Interaction and Manipulation. Advanced Robotics 17(3), 275–291 (2003)

    Article  Google Scholar 

  10. Ammi, M., Ferreira, A.: Realistic Visual and Haptic Rendering for Biological-Cell Injection. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2005), Barcelona, Spain, pp. 930–935 (2005)

    Google Scholar 

  11. Mattos, L., Grant, E., Thresher, R.: Semi-Automated Blastocyst Microinjection. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Orlando, Florida, USA, pp. 1780–1785 (2006)

    Google Scholar 

  12. Kortschack, A., Shirinov, A., Trueper, T., Fatikow, S.: Development of Mobile Versatile Nanohandling Micro-robots: Design, Driving Principles, Haptic Control. Robotica 23(4), 419–434 (2005)

    Article  Google Scholar 

  13. Grange, S., Conti, F., Helmer, P., Rouiller, P., Baur, C.: The Delta Haptic Device as a Nanomanipulator. Proc. SPIE Micro-Robotics & Microassembly III 4568, 100–111 (2001)

    Article  Google Scholar 

  14. Vlachos, K., Papadopoulos, E.: Analysis and Experiments of a Haptic Tele-Manipulation Environment for a Microrobot Driven by Centripetal Forces. ASME Journal of Computing Sciences and Information in Engineering - Special Issue on Haptics, Tactile and Multimodal Interfaces 8(4) (2008)

    Google Scholar 

  15. Vartholomeos, P., Papadopoulos, E.: Dynamics, Design and Simulation of a Novel Microrobotic Platform Employing Vibration Microactuators. Journal of Dynamic Systems, Measurement and Control, ASME 128, 122–134 (2006)

    Article  Google Scholar 

  16. Vlachos, K., Papadopoulos, E.: Transparency Maximization Methodology for Haptic Devices. IEEE/ASME Trans. on Mechatronics 11(3), 249–255 (2006)

    Article  Google Scholar 

  17. Vlachos, K., Papadopoulos, E., Mitropoulos, D.: Design and Implementation of a Haptic Device for Urological Operations. IEEE Trans. on Robotics & Aut. 19(5), 801–809 (2003)

    Article  Google Scholar 

  18. Vlachos, K., Vartholomeos, P., Papadopoulos, E.: A Haptic Tele- Manipulation Environment for a Vibration-Driven Micromechatronic Device. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics Systems (AIM 2007), ETH Zurich, Switzerland, September 4-7 (2007)

    Google Scholar 

  19. Tan, H.Z., Srinivasan, M.A., Ederman, B., Cheng, B.: Human Factors for the Design of Force-Reflecting Haptic Interfaces. ASME Dynamic Systems and Control 55(1), 353–359 (1994)

    Google Scholar 

  20. Wiker, S.F., Hershkowitz, E., Zilk, J.: Teleoperator Comfort and Psychometric Stability: Criteria for Limiting Master-Controller Forces of Operation and Feedback During Telemanipulation. In: Proc. NASA Conference on Space Telerobotics, Pasadena, CA, USA, vol. I, pp. 99–107 (1989)

    Google Scholar 

  21. Gil, J.J., Avello, A., Rubio, A., Florez, J.: Stability Analysis of a 1 DOF Haptic Interface Using the Routh-Hurwitz Criterion. IEEE Trans. on Control System Technology 12(4), 583–588 (2004)

    Article  Google Scholar 

  22. Salcudean, S.E., Zhu, M., Zhu, W.-H., Hashtrudi-Zaad, K.: Transparent Bilateral Teleoperation under Position and Rate Control. I. J. Robotic Research 19(12), 1185–1202 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vlachos, K., Papadopoulos, E. (2014). Design and Experimental Validation of a Hybrid Micro Tele-Manipulation System. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics