Skip to main content

Discrete State Space Models

  • Chapter
  • First Online:
Non-equilibrium Energy Transformation Processes

Part of the book series: Springer Theses ((Springer Theses))

  • 528 Accesses

Abstract

Consider a two-level system (N = 2) with the general transition rate matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we assume that the transformation exists.

  2. 2.

    Smaller (larger) \(\gamma \) would correspond to saddle points lying closer to level \(k (k + 1)\) in configuration space. The derivations in Sects. 3.4.3 and 3.4.4 can be performed analogously for any \(\gamma \) and \(F_\mathrm{b}\).

  3. 3.

    Force controlled experiments are achievable with magnetic tweezers or with optical tweezers operating in the force clamp mode. In the latter case, the conjugate variable to the applied force \(f\) should better be taken as the trap-pipette distance (rather than the molecular extension) because for this definition the fluctuation theorems are obeyed. Both definitions differ only by a boundary term involving the final and initial forces \(f_\mathrm{f}\) and \(f_\mathrm{i}\), respectively (for details, see [67]).

  4. 4.

    In this case one can show (cf. Sect. 2.3) that \(\langle \exp (-\beta w)\rangle =\phi (t)\exp \{-\beta [F(t)-\mathcal{F}_1(0)]\} =\phi (t)\exp [-\beta F(t)]\), where \(\mathcal{F}_1(0)=0\) from Eq. (3.52) and \(F(t)= -\beta ^{-1}\ln [(A^N-1)/(A-1)]\), \(A=\exp [-\beta (\Delta +vt)]/G\), is the free energy for an equilibrated system with level free energies \(\mathcal{F}_k(t)\) (protocol variables) at time \(t\); \(\phi (t)\) is the probability for the zipper to be in the fully closed microstate \(k=1\) under the reversed protocol, if the system is initially in to the equilibrium state \(\exp \{\beta [F(t)-\mathcal{F}_k(t)]\}\). The situation when the system is initially in thermal equilibrium, and hence the standard Jarzynski equality (2.61) is valid, is discussed in AppendixB. It turns out that in this case, in order to get the tails of the WPD correctly, the refolding can not be neglected.

References

  1. Brey, J. J., & Prados, A. (1991). Residual properties of a two-level system. Physics Review B, 43, 8350–8361, doi:10.1103/PhysRevB.43.8350, http://link.aps.org/doi/10.1103/PhysRevB.43.8350.

  2. Chvosta, P., Reineker, P., & Schulz, M. (2007). Probability distribution of work done on a two-level system during a nonequilibrium isothermal process. Physics Review E, 75, 041124, doi :10.1103/PhysRevE.75.041124, http://link.aps.org/doi/10.1103/PhysRevE.75.041124.

  3. Å ubrt, E., & Chvosta, P. (2007). Exact analysis of work fluctuations in two-level systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr 09) P09019. http://stacks.iop.org/1742-5468/2007/i=09/a=P09019.

  4. Manosas, M., Mossa, A., & Forns, N., et. al. (2009). Dynamic force spectroscopy of DNA hairpins: II. Irreversibility and dissipation. Journal of Statistical Mechanics: Theory and Experiment, 2009(nr. 02), P02061. http://stacks.iop.org/1742-5468/2009/i=02/a=P02061.

  5. Metropolis, N., Rosenbluth, A. W., & Rosenbluth, M. N., et. al. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. doi:10.1063/1.1699114, http://link.aip.org/link/?JCP/21/1087/1.

  6. Slater, L. (1960). Confluent hypergeometric functions. University Press. http://books.google.cz/books?id=BKUNAQAAIAAJ.

  7. Abramowitz, M., & Stegun, I. (1964). Handbook of mathematical functions: With formulars, graphs, and mathematical tables. Applied mathematics series, New York: Dover Publications, Incorporated, ISBN 9780486612720. http://books.google.se/books?id=MtU8uP7XMvoC.

  8. Glauber, R. J. (1963). Time-dependent statistics of the ising model. Journal of Mathematical Physics, 4(2), 294–307. doi:10.1063/1.1703954, http://link.aip.org/link/?JMP/4/294/1.

  9. Creutz, M., Jacobs, L., & Rebbi, C. (1979). Experiments with a Gauge-Invariant Ising system. Physics Review Letter, 42, 1390–1393, doi:10.1103/PhysRevLett.42.1390, http://link.aps.org/doi/10.1103/PhysRevLett.42.1390.

  10. Michael, C. (1986). Fast heat-bath algorithm for the Ising model. Physics Review B, 33, 7861–7862, doi:10.1103/PhysRevB.33.7861, http://link.aps.org/doi/10.1103/PhysRevB.33.7861.

  11. Esposito, M., Kawai, R., & Lindenberg, K., et. al. (2010). Quantum-dot carnot engine at maximum power. Physics Review E, 81, 041106, doi:10.1103/PhysRevE.81.041106.,http://link.aps.org/doi/10.1103/PhysRevE.81.041106.

  12. Schmiedl, T., & Seifert, U. (2008). Efficiency at maximum power: An analytically solvable model for stochastic heat engines. (EPL) Europhysics Letters, 81(nr. 2), 20003. http://stacks.iop.org/0295-5075/81/i=2/a=20003.

  13. Holubec, V. (2009) Nonequilibrium thermodynamics of small systems. Diploma thesis, Charles University in Prague, Faculty of Mathematics and Physics.

    Google Scholar 

  14. Chvosta, P., Holubec, V., & Ryabov, A. et. al. (2010). Thermodynamics of two-stroke engine based on periodically driven two-level system. Physica E: Low-dimensional Systems and Nanostructures, 42(3), 472–476. ISSN 1386–9477, doi :http://dx.doi.org/10.1016/j.physe.2009.06.031, In Proceedings of the International Conference Frontiers of Quantum and Mesoscopic Thermodynamics FQMT ’08. http://www.sciencedirect.com/science/article/pii/S1386947709002380.

  15. Chvosta, P., Einax, M., & Holubec, V. et. al. (2010). Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions. Journal of Statistical Mechanics: Theory and Experiment, 2010(nr. 03), P03002. http://stacks.iop.org/1742-5468/2010/i=03/a=P03002.

  16. Slater, L. (1966). Generalized hypergeometric functions. London: Cambridge University Press. http://books.google.cz/books?id=Hq0NAQAAIAAJ.

  17. Hänggi, P., Talkner, P., & Borkovec, M. (1990). Reaction-rate theory: fifty years after Kramers. Review of Modern Physics, 62, 251–341. doi:10.1103/RevModPhys.62.251, http://link.aps.org/doi/10.1103/RevModPhys.62.251.

  18. Mossa, A., Manosas, M., & Forns, N. et. al. (2009). Dynamic force spectroscopy of DNA hairpins: I. Force kinetics and free energy landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2009(nr. 02), P02060. http://stacks.iop.org/1742-5468/2009/i=02/a=P02060.

  19. Holubec, V., Chvosta, P., & Einax, M. et. al. (2011). Attempt time monte carlo: An alternative for simulation of stochastic jump processes with time-dependent transition rates. (EPL) Europhysics Letters, volume 93(nr. 4), 40003. http://stacks.iop.org/0295-5075/93/i=4/a=40003.

  20. Ehrenfest, P., & Ehrenfest, T. (1907). Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Physics Z, 8, 311.

    Google Scholar 

  21. Kac, M. (1959). Probability and related topics in physical sciences. Lectures in applied mathematics series, (Vol. 1A). London: Interscience Publishers, ISBN 9780821800478. http://books.google.cz/books?id=xm-Y9-GKr_EC.

  22. Schuster, H. (2001). Complex adaptive systems: An introduction. Scator Verlag, ISBN 9783980793605. http://books.google.cz/books?id=9GuePQAACAAJ.

  23. Hauert, C., Nagler, J., & Schuster, H. (2004). Of dogs and fleas: The dynamics of N uncoupled two-State systems. Journal of Statistical Physics, 116(5–6), 1453–1469. ISSN 0022–4715, doi:10.1023/B:JOSS.0000041725.70622.c4, http://dx.doi.org/10.1023/B%3AJOSS.0000041725.70622.c4.

  24. Imparato, A., & Peliti, L. (2005). Work-probability distribution in systems driven out of equilibrium. Physics Review E, 72, 046114, doi:10.1103/PhysRevE.72.046114. http://link.aps.org/doi/10.1103/PhysRevE.72.046114.

  25. Ritort, F. (2004). Work and heat fluctuations in two-state systems: a trajectorythermodynamics formalism. Journal of Statistical Mechanics: Theory and Experiment, 2004(nr. 10), P10016. http://stacks.iop.org/1742-5468/2004/i=10/a=P10016.

  26. Híjar, H., Quintana-H, J., & Sutmann, G. (2007). Non-equilibrium work theorems for the two-dimensional Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr. 04), P04010. http://stacks.iop.org/1742-5468/2007/i=04/a=P04010.

  27. Yellin, J. (1995). Two exact lattice propagators. Physics Review E, 52, 2208–2215, doi:10.1103/PhysRevE.52.2208, http://link.aps.org/doi/10.1103/PhysRevE.52.2208.

  28. Mazonka, O., & Jarzynski, C. (1999). Exactly solvable model illustrating far-from-equilibrium predictions. eprint arXiv:cond-mat/9912121, arXiv:cond-mat/9912121, http://arxiv.org/abs/cond-mat/9912121.

  29. Holubec, V., Chvosta, P., & Maass, P. (2012). Dynamics and energetics for a molecular zipper model under external driving. Journal of Statistical Mechanics: Theory and Experiment, 2012(nr. 11), P11009. http://stacks.iop.org/1742-5468/2012/i=11/a=P11009.

  30. Poland, D., & Scheraga, H. A. (1966). Occurrence of a phase transition in nucleic acid models. The Journal of Chemical Physics, 45(5), 1464–1469. doi:10.1063/1.1727786. http://link.aip.org/link/?JCP/45/1464/1.

  31. Hanke, A., & Metzler, R. (2003). Bubble dynamics in DNA. Journal of Physics A: Mathematical and General, 36(nr. 36), L473. http://stacks.iop.org/0305-4470/36/i=36/a=101.

  32. Bicout, D. J., & Kats, E. (2004). Bubble relaxation dynamics in double-stranded DNA. Physics Review E, 70, 010902, doi:10.1103/PhysRevE.70.010902, http://link.aps.org/doi/10.1103/PhysRevE.70.010902.

  33. Fogedby, H. C., & Metzler, R. (2007). DNA bubble dynamics as a quantum coulomb problem. Physics Review Letter, 98, 070601, doi:10.1103/PhysRevLett.98.070601. http://link.aps.org/doi/10.1103/PhysRevLett.98.070601.

  34. Metzler, R., Ambjörnsson, T., & Hanke, A. et. al. (2009). Single DNA denaturation and bubble dynamics. Journal of Physics: Condensed Matter, 21(nr. 3), 034111. http://stacks.iop.org/0953-8984/21/i=3/a=034111.

  35. Gibbs, J. H., & DiMarzio, E. A. (1959). Statistical mechanics of helix-coil transitions in biological macromolecules. The Journal of Chemical Physics, 30(1), 271–282. doi:10.1063/1.1729886, http://link.aip.org/link/?JCP/30/271/1.

  36. Crothers, D., Kallenbach, N. R., & Zimm, B. (1965). The melting transition of low-molecular-weight DNA: Theory and experiment. Journal of Molecular Biology, 11(4), 802–820. ISSN 0022–2836, doi:10.1016/S0022-2836(65)80037-7, http://www.sciencedirect.com/science/article/pii/S0022283665800377.

  37. Kittel, C. (1969). Phase transition of a molecular zipper. American Journal of Physics, 37(9), 917–920. doi:10.1119/1.1975930, http://link.aip.org/link/?AJP/37/917/1.

  38. Liphardt, J., Onoa, B., & Smith, S. B. et. al. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science, 292(5517), 733–737. doi:10.1126/science.1058498, http://www.sciencemag.org/content/292/5517/733.full.pdf., http://www.sciencemag.org/content/292/5517/733.abstract.

  39. Liphardt, J., Dumont, S., & Smith, S. B. et. al. (2002). Equilibrium information from nonequilibrium measurements in an experimental test of jarzynski’s equality. Science, 296(5574), 1832–1835. doi:10.1126/science.1071152, http://www.sciencemag.org/content/296/5574/1832.full.pdf. http://www.sciencemag.org/content/296/5574/1832.abstract.

  40. Lang, M. J., & Block, S. M. (2003). Resource letter: LBOT-1: Laser-based optical tweezers. American Journal of Physics, 71(3), 201–215. doi:10.1119/1.1532323, http://link.aip.org/link/?AJP/71/201/1.

  41. Onoa, B., Dumont, S., & Liphardt, J. et. al. (2003). Identifying Kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science, 299(5614), 1892–1895. doi:10.1126/science.1081338, http://www.sciencemag.org/content/299/5614/1892.full.pdf., http://www.sciencemag.org/content/299/5614/1892.abstract.

  42. Ritort, F. (2006). Single-molecule experiments in biological physics: methods and applications. Journal of Physics: Condensed Matter, 18(nr. 32), R531. http://stacks.iop.org/0953-8984/18/i=32/a=R01.

  43. Ritort, F. (2008). Advances in chemical physics, Chapter nonequilibrium fluctuations in small systems: From Physics to Biology. (vol. 137, pp. 31–123). Wiley. ISBN 9780470238080, doi:10.1002/9780470238080.ch2. http://dx.doi.org/10.1002/9780470238080.ch2.

  44. Tinoco Jr, I., & Bustamante, C. (1999). How RNA folds. Journal of Molecular Biology, 293(2), 271–281. ISSN 0022–2836, doi:10.1006/jmbi.1999.3001, http://www.sciencedirect.com/science/article/pii/S0022283699930012.

  45. Manosas, M., & Ritort, F. (2005). Thermodynamic and Kinetic Aspects of RNA Pulling experiments. Biophysical Journal, 88(5), 3224–3242. ISSN 0006–3495, doi:10.1529/biophysj.104.045344, http://www.sciencedirect.com/science/article/pii/S0006349505733749.

  46. Thirumalai, D., & Hyeon, C. (2005). RNA and protein folding: common themes and variations. Biochemistry, 44(13), 4957–4970. doi:10.1021/bi047314+, pMID: 15794634, http://pubs.acs.org/doi/pdf/10.1021/bi047314%2B, http://pubs.acs.org/doi/abs/10.1021/bi047314%2B.

  47. Finkelstein, A. (2003). Course 12: Proteins: Structural, thermodynamic and kinetic aspects. In J.-L. Barrat, M. Feigelman, J. Kurchan, J. Dalibard (Eds.) Slow Relaxations and nonequilibrium dynamics in condensed matter, Les Houches-École d’Été de Physique Theorique, (vol. 77, pp. 649–703). Springer, Berlin. ISBN 978-3-540-40141-4, doi:10.1007/978-3-540-44835-8_12, http://adsabs.harvard.edu/abs/2004srnd.conf.649F.

  48. Green R. & Noller, H. F. (1997). Ribosomes and translation. Annual Review of Biochemistry, 66(1), 679–716. doi:10.1146/annurev.biochem.66.1.679, pMID: 9242921, http://www.annualreviews.org/doi/pdf/10.1146/annurev.biochem.66.1.679., http://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.66.1.679.

  49. Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell, 108, 557–572. http://linkinghub.elsevier.com/retrieve/pii/S0092867402006190.

  50. Kornberg, A. & Baker, T. (2005). Dna replication. University Science Books. ISBN 9781891389443. http://books.google.cz/books?id=KDsubusF0YsC.

  51. Tackett, A. J., Morris, P. D., & Dennis, R. et. al. (2001). Unwinding of unnatural substrates by a DNA helicase. Biochemistry, 40(2), 543–548. doi:10.1021/bi002122+, pMID: 11148049, http://pubs.acs.org/doi/pdf/10.1021/bi002122%2B.

  52. Palassini, M., & Ritort, F. (2011). Improving free-energy estimates from unidirectional work measurements: Theory and experiment. Physics Review Letter, 107, 060601, doi:10.1103/PhysRevLett.107.060601, http://link.aps.org/doi/10.1103/PhysRevLett.107.060601.

  53. Esposito, M., & Van den Broeck, C. (2010). Three detailed fluctuation theorems. Physics Review Letter, 104, 090601, doi:10.1103/PhysRevLett.104.090601, http://link.aps.org/doi/10.1103/PhysRevLett.104.090601.

  54. Esposito, M., & Van den Broeck, C. (2010). Three faces of the second law. I. Master equation formulation. Physics Review E, 82, 011143, doi:10.1103/PhysRevE.82.011143, http://link.aps.org/doi/10.1103/PhysRevE.82.011143.

  55. Van den Broeck, C. & Esposito, M. (2010). Three faces of the second law. II. Fokker-Planck formulation. Physics Review E, 82, 011144, doi:10.1103/PhysRevE.82.011144, http://link.aps.org/doi/10.1103/PhysRevE.82.011144.

  56. Seifert, U. (2008). Stochastic thermodynamics: principles and perspectives. The European Physical Journal B—Condensed Matter and Complex Systems, 64, 423–431, ISSN 1434–6028, DOI:10.1140/epjb/e2008-00001-9, http://dx.doi.org/10.1140/epjb/e2008-00001-9.

  57. Braun, O., Hanke, A., & Seifert, U. (2004). Probing molecular free energy landscapes by periodic loading. Physics Review Letter, 93, 158105, doi:10.1103/PhysRevLett.93.158105, http://link.aps.org/doi/10.1103/PhysRevLett.93.158105.

  58. Crooks, G. E. (1999). Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physics Review E, 60, 2721–2726, doi:10.1103/PhysRevE.60.2721, http://link.aps.org/doi/10.1103/PhysRevE.60.2721.

  59. Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. Physics Review Letter, 78, 2690–2693, doi:10.1103/PhysRevLett.78.2690. http://link.aps.org/doi/10.1103/PhysRevLett.78.2690.

  60. Chatelain, C., & Karevski, D. (2006) Probability distributions of the work in the two-dimensional Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2006(nr. 06), P06005. http://stacks.iop.org/1742-5468/2006/i=06/a=P06005.

  61. Einax, M., & Maass, P. (2009). Work distributions for Ising chains in a time-dependent magnetic field. Physics Review E, 80, 020101, doi:10.1103/PhysRevE.80.020101. http://link.aps.org/doi/10.1103/PhysRevE.80.020101.

  62. Baule, A., & Cohen, E. G. D. (2009). Steady-state work fluctuations of a dragged particle under external and thermal noise. Physics Review E, 80, 011110, doi:10.1103/PhysRevE.80.011110, http://link.aps.org/doi/10.1103/PhysRevE.80.011110.

  63. Lubensky, D. K., & Nelson, D. R. (2000). Pulling pinned polymers and unzipping DNA. Physics Review Letter, 85, 1572–1575, doi:10.1103/PhysRevLett.85.1572, http://link.aps.org/doi/10.1103/PhysRevLett.85.1572.

  64. Engel, S., Alemany, A., & Forns, N. et. al. (2011). Folding and unfolding of a triple-branch DNA molecule with four conformational states. Philosophical Magazine, 91(13–15), 2049–2065. doi:10.1080/14786435.2011.557671, http://www.tandfonline.com/doi/pdf/10.1080/14786435.2011.557671. http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.557671.

  65. Bell, G. (1978). Models for the specific adhesion of cells to cells. Science, 200(4342), 618–627. doi:10.1126/science.347575, http://www.sciencemag.org/content/200/4342/618.full.pdf., http://www.sciencemag.org/content/200/4342/618.abstract.

  66. Cocco, S., Monasson, R., & Marko, J. F. (2001). Force and kinetic barriers to unzipping of the DNA double helix. Proceedings of the National Academy of Sciences, 98(15), 8608–8613. doi:10.1073/pnas.151257598, http://www.pnas.org/content/98/15/8608.full.pdf+html., http://www.pnas.org/content/98/15/8608.abstract.

  67. Alemany, A., Ribezzi, M., & Ritort, F. (2011). Recent progress in fluctuation theorems and free energy recovery. AIP Conference Proceedings, 1332(1), 96–110. doi:10.1063/1.3569489, http://link.aip.org/link/?APC/1332/96/1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Holubec .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holubec, V. (2014). Discrete State Space Models. In: Non-equilibrium Energy Transformation Processes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07091-9_3

Download citation

Publish with us

Policies and ethics