Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 251 Accesses

Abstract

This chapter reviews the theoretical foundation of the work presented in this thesis. Section 2.1 outlines the main features of the Standard Model of particle physics. Section 2.2 gives an introduction to Supersymmetry. The content is taken from the referenced sources. Parts of this chapter are taken from the diploma thesis of the author [1] and have been adapted according to the latest developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not yet established for neutrinos.

  2. 2.

    The Planck scale is defined as the energy scale at which the effects of gravity become comparable to the other forces and quantum gravity can no longer be ignored.

  3. 3.

    Here the so-called modified minimal subtraction scheme \(\overline{MS}\) is used [45, 46].

  4. 4.

    The tilde symbol is used to denote supersymmetric partners of SM particles.

  5. 5.

    Spontaneous breaking of global Supersymmetry would require non-zero vacuum expectation values of either the F or D auxiliary fields (see Sect. 2.2.2).

  6. 6.

    Measurements are also expected from the Planck collaboration (e.g. [65]).

  7. 7.

    The high-scale fine-tuning definition described in Ref.  [64] is used.

References

  1. M. Backes, Data-driven background estimation for the one-lepton SUSY search mode in ATLAS. Diploma thesis, Hamburg University, CERN-THESIS-2008-168, 2008. http://cdsweb.cern.ch/record/1445940

  2. Particle Data Group Collaboration, J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D86, 010001 (2012)

    Google Scholar 

  3. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  4. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  5. A. Salam, in Weak and Electromagnetic Interactions, ed. by W. Svartholm. Elementary Particle Theory (Almquist and Wiksell, Stockholm, 1968), p. 367

    Google Scholar 

  6. E. Noether, Invariante Variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen 1918, 235–257 (1918), arXiv:physics/0503066 [physics]

  7. E. Fermi, Versuch einer Theorie der \(\beta \)-Strahlen. I, Zeitschrift für Physik A Hadrons and Nuclei 88, 161–177 (1934). http://dx.doi.org/10.1007/BF01351864. doi: 10.1007/BF01351864

  8. FAST Collaboration, A. Barczyk et al., Measurement of the Fermi constant by FAST. Phys. Lett. B663, 172–180 (2008), arXiv:0707.3904 [hep-ex]

  9. MuLan Collaboration, D. Webber et al., Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision. Phys. Rev. Lett. 106, 041803 (2011), arXiv:1010.0991 [hep-ex]

  10. T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956). http://link.aps.org/doi/10.1103/PhysRev.104.254

  11. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957). http://link.aps.org/doi/10.1103/PhysRev.105.1413

  12. R. Feynman, M. Gell-Mann, Theory of Fermi interaction. Phys. Rev. 109, 193–198 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. E. Sudarshan, R. Marshak, Chirality invariance and the universal Fermi interaction. Phys. Rev. 109, 1860–1860 (1958)

    Article  ADS  Google Scholar 

  14. T. Nakano, K. Nishijima, Charge independence for V-particles. Prog. Theor. Phys. 10, 581–582 (1953)

    Article  ADS  Google Scholar 

  15. M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Il Nuovo Cimento (1955–1965) 4, 848–866 (1956). http://dx.doi.org/10.1007/BF02748000. doi:10.1007/BF02748000

  16. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964)

    Article  ADS  Google Scholar 

  18. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  20. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Kibble, Symmetry breaking in nonabelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)

    Article  ADS  Google Scholar 

  22. Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Goldstone, Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)

    Article  ADS  Google Scholar 

  25. M. Kobayashi, T. Maskawa, CP Violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  26. T. Hambye, K. Riesselmann, Matching conditions and Higgs boson mass upper bounds reexamined. Phys. Rev. D 55, 7255–7262 (1997). http://link.aps.org/doi/10.1103/PhysRevD.55.7255

  27. ALEPH Collaboration, CDF Collaboration, D0 Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [hep-ex]. http://lepewwg.web.cern.ch/LEPEWWG/

  28. B.W. Lee, C. Quigg, H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass. Phys. Rev. D16, 1519 (1977)

    ADS  Google Scholar 

  29. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. Phys. Rept. 457, 1–216 (2008), arXiv:hep-ph/0503172 [hep-ph]

  30. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy et al., The electroweak fit of the standard model after the discovery of a new Boson at the LHC, arXiv:1209.2716 [hep-ph]

  31. ATLAS Collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva, 2012. https://cds.cern.ch/record/1499629

  32. CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva, 2012. https://cds.cern.ch/record/1494149

  33. ATLAS Collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the \(H \rightarrow ZZ^{*} \rightarrow 4l\) channel with the ATLAS detector, ATLAS-CONF-2012-169, CERN, Geneva, 2012. https://cds.cern.ch/record/1499628

  34. LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003), arXiv:hep-ex/0306033 [hep-ex]

  35. CDF Collaboration, T. Aaltonen et al., Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set. Phys. Rev. Lett. 109, 111802 (2012), arXiv:1207.1707 [hep-ex]

  36. D0 Collaboration, V.M. Abazov et al., Combined search for the standard model Higgs boson decaying to \(b \bar{b}\) using the D0 Run II data set. Phys. Rev. Lett. 109, 121802 (2012), arXiv:1207.6631 [hep-ex]

  37. CDF Collaboration, D0 Collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron. Phys. Rev. Lett. 109, 071804 (2012), arXiv:1207.6436 [hep-ex]

  38. ATLAS Collaboration, Combined search for the standard model Higgs boson in \(pp\) collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Phys. Rev. D86, 032003 (2012), arXiv:1207.0319 [hep-ex]

  39. CMS Collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt{s} = 7\) TeV. Phys. Lett. B710, 26–48 (2012), arXiv:1202.1488 [hep-ex]

  40. ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012), arXiv:1207.7214 [hep-ex]

  41. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B |textbf716, 30–61 (2012), arXiv:1207.7235 [hep-ex]

  42. J.R. Ellis, The superstring: theory of everything, or of nothing? Nature 323, 595–598 (1986)

    Article  ADS  Google Scholar 

  43. S.P. Martin, A supersymmetry primer, arXiv:hep-ph/9709356

  44. U. Amaldi, W. de Boer, H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B260, 447 (1991)

    Article  ADS  Google Scholar 

  45. G. ’t Hooft, M. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

    Google Scholar 

  46. S. Weinberg, New approach to the renormalization group. Phys. Rev. D8, 3497–3509 (1973)

    ADS  Google Scholar 

  47. J. Ellis, S. Kelley, D. Nanopoulos, Probing the desert using gauge coupling unification. Phys. Lett. B260, 131 (1991)

    Article  ADS  Google Scholar 

  48. M. Einhorn, D. Jones, The weak mixing angle and unification mass in supersymmetric SU(5). Nucl. Phys. B196, 475 (1982)

    Article  ADS  Google Scholar 

  49. D. Kazakov, Beyond the standard model (in search of supersymmetry), arXiv:hep-ph/0012288 [hep-ph]

  50. WMAP Collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011), arXiv:1001.4538 [astro-ph.CO]

  51. P. Binetruy, Supersymmetry: Theory, Experiment, and Cosmology (Oxford University Press, New York, 2006)

    Google Scholar 

  52. S.R. Coleman, J. Mandula, All possible symmetries of the S-matrix. Phys. Rev. 159, 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  53. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B70, 39 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  54. R. Haag, J.T. Lopuszanski, M. Sohnius, All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B88, 257 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  55. L.J. Hall, J.D. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D27, 2359–2378 (1983)

    ADS  Google Scholar 

  56. S.K. Soni, H.A. Weldon, Analysis of the supersymmetry breaking induced by \(N=1\) supergravity theories. Phys. Lett. B126, 215 (1983)

    Article  ADS  Google Scholar 

  57. N. Ghodbane, H.-U. Martyn, Compilation of SUSY particle spectra from Snowmass 2001 benchmark models, arXiv:hep-ph/0201233

  58. W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, arXiv:hep-ph/9611232 [hep-ph]. http://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino&visible=tools

  59. LEP, SUSY Working Group (ALEPH, DELPHI L3, OPAL), LEPSUSYWG/01-03.1. http://lepsusy.web.cern.ch/lepsusy/Welcome.html

  60. LHCb Collaboration, First evidence for the decay \(B_s \rightarrow \mu ^+ \mu ^-\). Phys. Rev. Lett. 110, 021801 (2013), arXiv:1211.2674 [Unknown]

  61. Muon g-2 Collaboration, G. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 92, 161802 (2004), arXiv:hep-ex/0401008

  62. ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb\(^{-1}\) of \(\sqrt{s} = 7\) TeV proton-proton collision data, arXiv:1208.0949 [hep-ex]

  63. CMS Collaboration, Search for supersymmetry at the LHC in events with jets and missing transverse energy. Phys. Rev. Lett. 107, 221804 (2011), arXiv:1109.2352 [hep-ex]

  64. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, arXiv:1210.3019 [hep-ph]

  65. Planck Collaboration, Planck early results. I. The Planck mission. Astron. Astrophys. 536, 16464 (2011), arXiv:1101.2022 [astro-ph.IM]

  66. G. Belanger, S. Kraml, A. Pukhov, Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP. Phys. Rev. D72, 015003 (2005), arXiv:hep-ph/0502079

  67. Heavy Flavor Averaging Group Collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv:1207.1158 [hep-ex]

  68. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ). Eur. Phys. J. C71, 1515 (2011), arXiv:1010.4180 [hep-ph]

  69. CMS Collaboration, Public results of supersymmetry searches. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

  70. M.S. Carena, M. Quiros, C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM. Nucl. Phys. B461, 407–436 (1996), arXiv:hep-ph/9508343 [hep-ph]

  71. S. Heinemeyer, W. Hollik, G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM. Phys. Lett. B440, 296–304 (1998), arXiv:hep-ph/9807423 [hep-ph]

  72. M.S. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP—even Higgs boson in the MSSM. Nucl. Phys. B580, 29–57 (2000), arXiv:hep-ph/0001002 [hep-ph]

  73. J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski, F. Zwirner, Higgs bosons in a nonminimal supersymmetric model. Phys. Rev. D39, 844 (1989)

    ADS  Google Scholar 

  74. J.E. Kim, H.P. Nilles, The mu problem and the strong CP problem. Phys. Lett. B138, 150 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  75. M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures. JHEP 1209, 035 (2012), arXiv:1110.6926 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Backes .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Backes, M. (2014). Theoretical Background. In: Measurement of the Inclusive Electron Cross-Section from Heavy-Flavour Decays and Search for Compressed Supersymmetric Scenarios with the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07136-7_2

Download citation

Publish with us

Policies and ethics