Skip to main content

Superiorization for Image Analysis

  • Conference paper
Combinatorial Image Analysis (IWCIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Included in the following conference series:

Abstract

Many scientific, engineering and medical applications of image analysis use constrained optimization, with the constraints arising from the desire to produce a solution that is constraints-compatible. It is typically the case that a large number of solutions would be considered good enough from the point of view of being constraints-compatible. In such a case, an optimization criterion is introduced that helps us to distinguish the “better” constraints-compatible solutions. The superiorization methodology is a recently-developed heuristic approach to constrained optimization. The underlying idea is that in many applications there exist computationally-efficient iterative algorithms that produce solutions that are constraints-compatible. Often the algorithm is perturbation resilient in the sense that, even if certain kinds of changes are made at the end of each iterative step, the algorithm still produces a constraints-compatible solution. This property is exploited in superiorization by using such perturbations to steer the algorithm to a solution that is not only constraints-compatible, but is also desirable according to a specified optimization criterion. The approach is very general, it is applicable to many iterative procedures and optimization criteria. Most importantly, superiorization is a totally automatic procedure that turns an iterative algorithm into its superiorized version. This, and its practical consequences in various application areas, have been investigated for a variety of constrained optimization tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley (1993)

    Google Scholar 

  2. Bertsekas, D.: Nonlinear Programming. Athena Scientific (1995)

    Google Scholar 

  3. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall (1989)

    Google Scholar 

  4. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Select. Topics Signal Proc. 1, 540–547 (2007)

    Google Scholar 

  5. Censor, Y., Chen, W., Combettes, P., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Google Scholar 

  6. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (2010)

    Google Scholar 

  7. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. Journal of Optimization Theory and Applications 160, 730–747 (2014)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T., Herman, G.T.: Averaging strings of sequential iterations for convex feasibility problems. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 101–114. Elsevier (2001)

    Google Scholar 

  9. Censor, Y., Zaslavski, A.J.: String-averaging projected subgradient methods for constrained minimization. Optimization Methods and Software 29, 658–670 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press (1998)

    Google Scholar 

  11. Chen, W., Craft, D., Madden, T., Zhang, K., Kooy, H., Herman, G.T.: A fast optimization algorithm for multicriteria intensity modulated proton therapy planning. Med. Phys. 37, 4938–4945 (2010)

    Google Scholar 

  12. Combettes, P., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE T. Image Proc. 11, 1295–1304 (2002)

    Article  MathSciNet  Google Scholar 

  13. Combettes, P., Pesquet, J.C.: Image restoration subject to a total variation constraint. IEEE T. Image Proc. 13, 1213–1222 (2004)

    Article  Google Scholar 

  14. Davidi, R., Herman, G.T., Censor, Y.: Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. T. Oper. Res. 16, 505–524 (2009)

    Google Scholar 

  15. Defrise, M., Vanhove, C., Liu, X.: An algorithm for total variation regularization in high-dimensional linear problems. Inverse Probl. 27, 065002 (2011)

    Google Scholar 

  16. Dutta, J., Ahn, S., Li, C., Cherry, S., Leahy, R.: Joint L-1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol. 57, 1459–1476 (2012)

    Article  Google Scholar 

  17. Fredriksson, A., Forsgren, A., Hardemark, B.: Minimax optimization for handling range and setup uncertainties in proton therapy. Med. Phys. 38, 1672–1684 (2011)

    Article  Google Scholar 

  18. Garduño, E., Herman, G.T.: Superiorization of the ML-EM algorithm. IEEE Transactions on Nuclear Science 61, 162–172 (2014)

    Article  Google Scholar 

  19. Garduño, E., Herman, G.T., Davidi, R.: Reconstruction from a few projections by ℓ1-minimization of the Haar transform. Inverse Probl. 27, 055006 (2011)

    Google Scholar 

  20. Graham, M., Gibbs, J., Cornish, D., Higgins, W.: Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy. IEEE T. Med. Imag. 29, 982–997 (2010)

    Article  Google Scholar 

  21. Helou Neto, E., De Pierro, A.R.: Incremental subgradients for constrained convex optimization: A unified framework and new methods. SIAM J. Opt. 20, 1547–1572 (2009)

    Article  MATH  Google Scholar 

  22. Helou Neto, E., De Pierro, A.R.: On perturbed steepest descent methods with inexact line search for bilevel convex optimization. Optimization 60, 991–1008 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Herman, G.T., Davidi, R.: On image reconstruction from a small number of projections. Inverse Probl. 24, 045011 (2008)

    Google Scholar 

  24. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: An optimization heuristic for medical physics. Med. Phys. 39, 5532–5546 (2012)

    Google Scholar 

  25. Holdsworth, C., Kim, M., Liao, J., Phillips, M.: A hierarchical evolutionary algorithm for multiobjective optimization in IMRT. Med. Phys. 37, 4986–4997 (2010)

    Article  Google Scholar 

  26. Lauzier, P., Tang, J., Chen, G.: Prior image constrained compressed sensing: Implementation and performance evaluation. Med. Phys. 39, 466–480 (2012)

    Google Scholar 

  27. Levitan, E., Herman, G.T.: A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE T. Med. Imag. 6, 185–192 (1987)

    Google Scholar 

  28. Men, C., Romeijn, H., Jia, X., Jiang, S.: Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT). Med. Phys. 37, 5787–5791 (2010)

    Article  Google Scholar 

  29. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer (2004)

    Google Scholar 

  30. Nikazad, T., Davidi, R., Herman, G.T.: Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl. 28, 035005 (2012)

    Google Scholar 

  31. Nurminski, E.: Envelope stepsize control for iterative algorithms based on Fejer processes with attractants. Optimiz. Method. Softw. 25, 97–108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Penfold, S., Schulte, R., Censor, Y., Rosenfeld, A.: Total variation superiorization schemes in proton computed tomography image reconstruction. Med. Phys. 37, 5887–5895 (2010)

    Article  Google Scholar 

  33. Rardin, R., Uzsoy, R.: Experimental evaluation of heuristic optimization algorithms: A tutorial. J. Heuristics 7, 261–304 (2001)

    Article  MATH  Google Scholar 

  34. Ruszczynski, A.: Nonlinear Optimization. Princeton University Press (2006)

    Google Scholar 

  35. Scheres, S., Gao, H., Valle, M., Herman, G.T., Eggermont, P., Frank, J., Carazo, J.M.: Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007)

    Google Scholar 

  36. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE T. Med. Imag. 1, 113–122 (1982)

    Article  Google Scholar 

  37. Sidky, E., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53, 4777–4807 (2008)

    Article  Google Scholar 

  38. Studholme, C., Hill, D., Hawkes, D.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 24, 25–35 (1997)

    Article  Google Scholar 

  39. Wernisch, L., Hery, S., Wodak, S.: Automatic protein design with all atom force-fields by exact and heuristic optimization. J. Mol. Biol. 301, 713–736 (2000)

    Article  Google Scholar 

  40. Wu, Q., Mohan, R.: Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med. Phys. 27, 701–711 (2000)

    Article  Google Scholar 

  41. Yeo, B., Sabuncu, M., Vercauteren, T., Holt, D., Amunts, K., Ziles, K., Goland, P., Fischl, B.: Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the cerebral cortex. IEEE T. Med. Imag. 29, 1424–1441 (2010)

    Article  Google Scholar 

  42. Zanakis, S., Evans, J.: Heuristic optimization - why, when, and how to use it. Interfaces 11, 84–91 (1981)

    Article  Google Scholar 

  43. Zhang, X., Wang, J., Xing, L.: Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization. Med. Phys. 38, 701–711 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Herman, G.T. (2014). Superiorization for Image Analysis. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics