Skip to main content

Critical Care

  • Chapter
  • First Online:
Clinical Autonomic Dysfunction

Abstract

This chapter will cover several areas of critical care, including anesthesiology, the emergency department, the operating room, and the various intensive care units, highlighting the neonatology intensive care unit in the neonatology section. The original beta-studies that validated P&S monitoring were performed in the critical care arena, including anesthesiology (FG Estafanous, MD, Cleveland Clinic) and pediatric cardiac surgery (WI Norwood, MD, Children’s Hospital of Pennsylvania, University of Pennsylvania). Since the late 1990s P&S monitoring has been validated in the critical care arena under WC Shoemaker, MD, Los Angeles County, and University of Southern California Hospital, specifically in the areas of trauma and sepsis. This chapter will also discuss hypovolemia, hypoxia, heart transplantation, pediatrics, neonatology, and brain and closed head injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo J, Shoemaker WC. Non-invasive autonomic nervous system monitoring in critical care. In: Shoemaker WC et al., editors. Procedures and monitoring for the critically ill. Philadelphia: W.B. Saunders Co; 2000. p. 211–24.

    Google Scholar 

  2. Colombo J, Shoemaker WC, Belzberg H, Hatzakis G, Fathizadeh P, Demetriades D. Noninvasive monitoring of the autonomic nervous system and hemodynamics of patients with blunt and penetrating trauma. J Trauma. 2008;65(6):1364–73.

    PubMed  Google Scholar 

  3. Zaglaniczny K, Shoemaker WC, Gorguze DS, Woo C, Colombo J, Blood CG. Examination of real-time heart rate variability during laparoscopic cholecystectomies and radical surgeries. Navy Report No. 00-47, NHRC, San Diego; 2000

    Google Scholar 

  4. Fathizadeh P, Shoemaker WC, Woo CCJ, Colombo J. Autonomic activity in trauma patients based on variability of heart rate and respiratory rate. Crit Care Med. 2004;32(5):1300–5.

    PubMed  Google Scholar 

  5. Akselrod S, Gordon S, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to- beat cardiovascular control. Science. 1981;213:213–20.

    Google Scholar 

  6. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectra analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  7. Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 1987;253:H176–83.

    CAS  PubMed  Google Scholar 

  8. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci. 1988;9:6–9.

    CAS  PubMed  Google Scholar 

  9. Boyd G, Stout D, Aultman M, Wyatt K, Vetter T. Are there reliable clinical predictors of cardiac autonomic neuropathy in diabetic patients? American Society of Anesthesiologists, annual meeting, San Diego, 16–20 Oct 2010.

    Google Scholar 

  10. Boyd G, Stout D, Morris R, Witherspoon CD, Vetter T, et al. Prevalence and severity of autonomic dysfunction in diabetic patients presenting for retinal surgery American Society of Anesthesiologists, Annual Meeting, San Diego, 16–20 Oct 2010.

    Google Scholar 

  11. Hanss R, Renner J, Ilies C, Moikow L, Buell O, Steinfath M, Scholz J, Bein B. Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients? Anaesthesia. 2008;63:129–35.

    CAS  PubMed  Google Scholar 

  12. Latson TW, Ashmore TH, Reinhart DJ, Klein KW, Giesecke AH. Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology. 1994;80:326–37.

    CAS  PubMed  Google Scholar 

  13. Burgos LG, Ebert TJ, Asiddao C, Turner LA, Pattison CZ, Wang-Cheng R, Kampine JP. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology. 1989;70:591–7.

    CAS  PubMed  Google Scholar 

  14. Knuttgen D, Buttner-Belz U, Gernot A, Doehn M. Unstable blood pressure during anesthesia in diabetic patients with autonomic neuropathy. Anasth Intensivther Notfallmed. 1990;25:256–62.

    CAS  PubMed  Google Scholar 

  15. Huang CJ, Kuok CH, Kuo TB, Hsu YW, Tsai PS. Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia. Acta Anaesthesiol Scand. 2006;50:542–8.

    PubMed  Google Scholar 

  16. Ciccarelli LL, Ford CM, Tsueda K. Autonomic neuropathy in a diabetic patient with renal failure. Anesthesiology. 1986;64:283–7.

    CAS  PubMed  Google Scholar 

  17. Amour J, Kersten JR. Diabetic cardiomyopathy and anesthesia: bench to bedside. Anesthesiology. 2008;108:524–30.

    PubMed  Google Scholar 

  18. Kahn JK, Sisson JC, Vinik AI. Prediction of sudden cardiac death in diabetic autonomic neuropathy. J Nucl Med. 1988;29:1605–6.

    CAS  PubMed  Google Scholar 

  19. Debono M, Cachia E. The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132:1–7.

    PubMed  Google Scholar 

  20. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens MJ. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.

    CAS  PubMed  Google Scholar 

  21. Valensi P, Sachs RN, Harfouche B, Lormeau B, Paries J, Cosson E, Paycha F, Leutenegger M, Attali JR. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care. 2001;24:339–43.

    CAS  PubMed  Google Scholar 

  22. Rauch U, Ziegler D, Piolot R, Schwippert B, Benthake H, Schultheiss HP, Tschoepe D. Platelet activation in diabetic cardiovascular autonomic neuropathy. Diabet Med. 1999;16:848–52.

    CAS  PubMed  Google Scholar 

  23. Fleisher LA. Heart rate variability as an assessment of cardiovascular status. J Cardiothorac Vasc Anesth. 1996;10(5):659–71.

    CAS  PubMed  Google Scholar 

  24. Schubert A, Palazzolo JA, Brum JM, Ribeiro MP, Tan M. Heart rate, heart rate variability, and blood pressure during perioperative stressor events in abdominal surgery. J Clin Anesth. 1997;9(1):52–60.

    CAS  PubMed  Google Scholar 

  25. Schmid H, Schaan B, Cecconello F, Maestri T, Neumann C. Proliferative diabetic retinopathy is related to cardiovascular autonomic neuropathy in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1995;29:163–8.

    CAS  PubMed  Google Scholar 

  26. Klein R, Moss SE, Klein BE, DeMets DL. Relation of ocular and systemic factors to survival in diabetes. Arch Intern Med. 1989;149:266–72.

    CAS  PubMed  Google Scholar 

  27. Knatterud GL. Mortality experience in the diabetic retinopathy study. Isr J Med Sci. 1983;19:424–8.

    CAS  PubMed  Google Scholar 

  28. Borch-Johnsen K, Kreiner S. Proteinuria: value as predictor of cardiovascular mortality in insulin dependent diabetes mellitus. Br Med J (Clin Res Ed). 1987;294:1651–4.

    CAS  Google Scholar 

  29. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356–60.

    CAS  PubMed  Google Scholar 

  30. Uchio E, Inamura M, Ohno S, Taguchi H, Saeki K. Survival rate after vitreous surgery in patients with diabetic retinopathy. Ophthalmologica. 1993;206:83–8.

    CAS  PubMed  Google Scholar 

  31. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg surveys S2 and S3. Diabetes Care. 2008;31:464–9.

    CAS  PubMed  Google Scholar 

  32. Nishimura. Association between cardiovascular autonomic neuropathy and left ventricular hypertrophy in diabetic hemodialysis patients. Nephrol Dial Transplant. 2004;19:2532–8.

    PubMed  Google Scholar 

  33. Lefrandt JD, Smit AJ, Zeebregts CJ, Gans RO, Hoogenberg KH. Autonomic dysfunction in diabetes: a consequence of cardiovascular damage. Curr Diabetes Rev. 2010;6(6):348–58.

    CAS  PubMed  Google Scholar 

  34. Gollamudi SR, Smiddy WE, Schachat AP, Michels RG, Vitale S. Long-term survival rate after vitreous surgery for complications of diabetic retinopathy. Ophthalmology. 1991;98:18–22.

    CAS  PubMed  Google Scholar 

  35. Schmitz A, Vaeth M. Microalbuminuria: a major risk factor in non-insulin-dependent diabetes. A 10-year follow-up study of 503 patients. Diabet Med. 1988;5:126–34.

    CAS  PubMed  Google Scholar 

  36. Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int. 1992;41:836–9.

    CAS  PubMed  Google Scholar 

  37. Nishinura M, Hashimoto T, Kobayashi H, Fukuda T, Okino K, Yamamoto N, Nakamura N, Yoshikawa T, Takahashi H, Ono T. Association between cardiovascular autonomic neuropathy and left ventricular hypertrophy in diabetic haemodialysis patients. Nephrol Dial Transplant. 2004;19(10):2532–8.

    Google Scholar 

  38. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  PubMed  Google Scholar 

  39. Lipsitz LA, Mietus J, Moody GB, Goldberger AL. Spectral characteristics of heart rate variability before and during postural tilt. Relations to aging and risk of syncope. Circulation. 1990;81:1803–10.

    CAS  PubMed  Google Scholar 

  40. Collins K. The autonomic nervous system in old age. Rev Clin Gerontol. 1991;1:337–45.

    Google Scholar 

  41. Crasset V, Mezzetti S, Antoine M, Linkowski P, Degaute JP, van de Borne P. Effects of aging and cardiac denervation on heart rate variability during sleep. Circulation. 2001;103:84–8.

    CAS  PubMed  Google Scholar 

  42. Smith JJ, Hughes CV, Ptacin MJ, Barney JA, Tristani FE, Ebert TJ. The effect of age on hemodynamic response to graded postural stress in normal men. J Gerontol. 1987;42:406–11.

    CAS  PubMed  Google Scholar 

  43. Shannon DC, Carley DW, Benson H. Aging of modulation of heart rate. Am J Physiol. 1987;253:H874–7.

    CAS  PubMed  Google Scholar 

  44. Ebert TJ, Morgan BJ, Barney JA, Denahan T, Smith JJ. Effects of aging on baroreflex regulation of sympathetic activity in humans. Am J Physiol. 1992;263:H798–803.

    CAS  PubMed  Google Scholar 

  45. Akinola A, Bleasdale-Barr K, Everall L, Mathias CJ. Investigation of autonomic disorders: appendix I. In: Mathias CJ, Bannister R, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. London: Oxford Medical Publications; 1999.

    Google Scholar 

  46. Brancati FL, Kao WH, Folsom AR, Watson RL, Szklo M. Incident type 2 diabetes mellitus in African American and white adults: the atherosclerosis risk in communities study. JAMA. 2000;283:2253–9.

    CAS  PubMed  Google Scholar 

  47. Parmer RJ, Cervenka JH, Stone RA, O’Connor DT. Autonomic function in hypertension. Are there racial differences? Circulation. 1990;81:1305–11.

    CAS  PubMed  Google Scholar 

  48. Karter AJ, Ferrara A, Liu JY, Moffet HH, Ackerson LM, Selby JV. Ethnic disparities in diabetic complications in an insured population. JAMA. 2002;287:2519–27.

    PubMed  Google Scholar 

  49. Morita H, Wu J, Zipes DP. The QT syndromes: long and short. Lancet. 2008;372:750–63.

    CAS  PubMed  Google Scholar 

  50. Gill GV, Woodward A, Casson IF, Weston PJ. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes–the ‘dead in bed’ syndrome revisited. Diabetologia. 2009;52:42–5.

    CAS  PubMed  Google Scholar 

  51. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH, Witteman JC. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol. 2006;47:362–7.

    PubMed  Google Scholar 

  52. Ewing DJ, Boland O, Neilson JM, Cho CG, Clarke BF. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia. 1991;34:182–5.

    CAS  PubMed  Google Scholar 

  53. Veglio M, Borra M, Stevens LK, Fuller JH, Perin PC. The relation between QTc interval prolongation and diabetic complications. The EURODIAB IDDM Complication Study Group. Diabetologia. 1999;42:68–75.

    CAS  PubMed  Google Scholar 

  54. Sivieri R, Veglio M, Chinaglia A, Scaglione P, Cavallo-Perin P. Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. The Neuropathy Study Group of the Italian Society for the Study of Diabetes. Diabet Med. 1993;10:920–4.

    CAS  PubMed  Google Scholar 

  55. Kahn JK, Sisson JC, Vinik AI. QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy. J Clin Endocrinol Metab. 1987;64:751–4.

    CAS  PubMed  Google Scholar 

  56. Sawicki PT, Dahne R, Bender R, Berger M. Prolonged QT interval as a predictor of mortality in diabetic nephropathy. Diabetologia. 1996;39:77–81.

    CAS  PubMed  Google Scholar 

  57. Lykke JA, Tarnow L, Parving HH, Hilsted J. A combined abnormality in heart rate variation and QT corrected interval is a strong predictor of cardiovascular death in type 1 diabetes. Scand J Clin Lab Invest. 2008;68(7):654–9.

    Google Scholar 

  58. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg cohort study. Diabetes Care. 2008;31:556–61.

    PubMed  Google Scholar 

  59. Lacigova S, Safranek P, Cechurova D, Krcma M, Visek J, Jankovec Z, Zourek M, Haladova I, Rusavy Z. Could we predict asymptomatic cardiovascular autonomic neuropathy in type 1 diabetic patients attending out-patients clinics? Wien Klin Wochenschr. 2007;119:303–8.

    PubMed  Google Scholar 

  60. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    CAS  PubMed  Google Scholar 

  61. Pousset F, Copie X, Lechat P, Jaillon P, Boissel JP, Hetzel M, Fillette F, Remme W, Guize L, Le Heuzey JY. Effects of bisoprolol on heart rate variability in heart failure. Am J Cardiol. 1996;77:612–7.

    CAS  PubMed  Google Scholar 

  62. Burger AJ, Kamalesh M. Effect of beta-adrenergic blocker therapy on the circadian rhythm of heart rate variability in patients with chronic stable angina pectoris. Am J Cardiol. 1999;83:596–8, A8.

    CAS  PubMed  Google Scholar 

  63. Ziegler D. Cardiovascular autonomic neuropathy: clinical manifestations and measurement. Diabetes Rev. 1999;7:342–57.

    Google Scholar 

  64. Lampert R, Ickovics JR, Viscoli CJ, Horwitz RI, Lee FA. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the beta-blocker heart attack trial. Am J Cardiol. 2003;91:137–42.

    CAS  PubMed  Google Scholar 

  65. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  Google Scholar 

  66. Didangelos TP, Arsos GA, Karamitsos DT, Athyros VG, Georga SD, Karatzas ND. Effect of quinapril or losartan alone and in combination on left ventricular systolic and diastolic functions in asymptomatic patients with diabetic autonomic neuropathy. J Diabetes Complications. 2006;20:1–7.

    PubMed  Google Scholar 

  67. Van Cauwenberge I, Philips JC, Scheen AJ. Anaesthetic risk related to cardiac autonomic neuropathy in diabetic patients. Rev Med Liege. 2008;63:488–93.

    PubMed  Google Scholar 

  68. Filipovic M, Jeger R, Probst C, Girard T, Pfisterer M, Gurke L, Skarvan K, Seeberger MD. Heart rate variability and cardiac troponin I are incremental and independent predictors of one-year all-cause mortality after major noncardiac surgery in patients at risk of coronary artery disease. J Am Coll Cardiol. 2003;42:1767–76.

    CAS  PubMed  Google Scholar 

  69. Laitio T, Jalonen J, Kuusela T, Scheinin H. The role of heart rate variability in risk stratification for adverse postoperative cardiac events. Anesth Analg. 2007;105:1548–60.

    PubMed  Google Scholar 

  70. Low PA, Benrud-Larson LM, Sletten DM, Opfer-Gehrking TL, Weigand SD, O’Brien PC, Suarez GA, Dyck PJ. Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care. 2004;27:2942–7.

    PubMed  Google Scholar 

  71. Astrup AS, Tarnow L, Rossing P, Hansen BV, Hilsted J, Parving HH. Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29:334–9.

    PubMed  Google Scholar 

  72. Hanss R, Block D, Bauer M, Ilies C, Magheli A, Schildberg-Schroth H, Renner J, Scholz J, Bein B. Use of heart rate variability analysis to determine the risk of cardiac ischaemia in high-risk patients undergoing general anaesthesia. Anaesthesia. 2008;63:1167–73.

    CAS  PubMed  Google Scholar 

  73. Monmeneu JV, Chorro FJ, Bodi V, Sanchis J, Llacer A, Garcia-Civera R, Ruiz R, Sanjuan R, Burguera M, Lopez-Merino V. Relationships between heart rate variability, functional capacity, and left ventricular function following myocardial infarction: an evaluation after one week and six months. Clin Cardiol. 2001;24:313–20.

    CAS  PubMed  Google Scholar 

  74. Rich MW, Saini JS, Kleiger RE, Carney RM, teVelde A, Freedland KE. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol. 1988;62:714–7.

    CAS  PubMed  Google Scholar 

  75. Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation. 1990;81:1217–24.

    CAS  PubMed  Google Scholar 

  76. Little JP. Consistency of ASA grading. Anaesthesia. 1995;50:658–9.

    CAS  PubMed  Google Scholar 

  77. Owens WD, Felts JA, Spitznagel Jr EL. ASA physical status classifications: a study of consistency of ratings. Anesthesiology. 1978;49:239–43.

    CAS  PubMed  Google Scholar 

  78. Inui K, Sannan H, Ota H, Uji Y, Nomura S, Kaige H, Kitayama I, Nomura J. EEG findings in diabetic patients with and without retinopathy. Acta Neurol Scand. 1998;97:107–9.

    CAS  PubMed  Google Scholar 

  79. Manschot SM, Biessels GJ, de Valk H, Algra A, Rutten GE, van der Grond J, Kappelle LJ. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes. Diabetologia. 2007;50:2388–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Petursson P, Gudbjornsdottir S, Aune S, Svensson L, Oddby E, Sjoland H, Herlitz J. Patients with a history of diabetes have a lower survival rate after in-hospital cardiac arrest. Resuscitation. 2008;76:37–42.

    CAS  PubMed  Google Scholar 

  81. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4–10.

    PubMed  Google Scholar 

  82. Kheterpal S, O’Reilly M, Englesbe MJ, Rosenberg AL, Shanks AM, Zhang L, Rothman ED, Campbell DA, Tremper KK. Preoperative and intraoperative predictors of cardiac adverse events after general, vascular, and urological surgery. Anesthesiology. 2009;110:58–66.

    PubMed  Google Scholar 

  83. Keyl C, Lemberger P, Palitzsch KD, Hochmuth K, Liebold A, Hobbhahn J. Cardiovascular autonomic dysfunction and hemodynamic response to anesthetic induction in patients with coronary artery disease and diabetes mellitus. Anesth Analg. 1999;88:985–91.

    CAS  PubMed  Google Scholar 

  84. Deutschman CS, Harris AP, Fleisher LA. Changes in heart rate variability under propofol anesthesia: a possible explanation for propofol-induced bradycardia. Anesth Analg. 1994;79:373–7.

    CAS  PubMed  Google Scholar 

  85. Tramer MR, Moore RA, McQuay HJ. Propofol and bradycardia: causation, frequency and severity. Br J Anaesth. 1997;78:642–51.

    CAS  PubMed  Google Scholar 

  86. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Wittlin SD, Heller GV, Filipchuk N, Engel S, Ratner RE, Iskandrian AE. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    PubMed  Google Scholar 

  87. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lee KH, Jang HJ, Kim YH, Lee EJ, Choe YS, Choi Y, Lee MG, Lee SH, Kim BT. Prognostic value of cardiac autonomic neuropathy independent and incremental to perfusion defects in patients with diabetes and suspected coronary artery disease. Am J Cardiol. 2003;92:1458–61.

    PubMed  Google Scholar 

  89. Schubert A. Why is power spectral heart rate analysis of interest to the anesthesiologist. A publication furnished by Cleveland Clinic. 1990.

    Google Scholar 

  90. Estafanous FG, Brum JM, Ribeiro MP, Estafanous M, Starr N, Ferrario C. Analysis of heart rate variability to assess hemodynamic alterations following induction of anesthesia. J Cardiothorac Vasc Anesth. 1992;6(6):647–57.

    Google Scholar 

  91. Young LH, Wackers FJT, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE, the DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Maser RE, Lenhard MJ. Review: cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    CAS  PubMed  Google Scholar 

  93. Huang CJ, Kuok CH, Kuo TBJ, Hsu YW, Tsai PS. Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia. Acta Anaesth Scan. 2006;50:542–8.

    Google Scholar 

  94. Garrard CS, Kontoyannis DA, Piepoli M. Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res. 1993;3:5–13.

    CAS  PubMed  Google Scholar 

  95. Brum JM, et al. Power spectrum of heart rate variability. Cleveland Clinic Foundation Report, Cleveland, OH; 1991.

    Google Scholar 

  96. Butler R, MacDonald TM, Struthers AD, Norris AD. Eur Heart L. 1998;19:1617–27.

    CAS  Google Scholar 

  97. Genovely H, Pfeifer MA. RR-variation; the autonomic test of choice in diabetes. Diabetes Metabol Rev. 1988;4:255–71.

    CAS  Google Scholar 

  98. Casolo G, Balli E, Taddei T, et al. Decreased spontaneous heart rate variability in congestive heart failure. Am J Cardiol. 1989;64:1162–7.

    CAS  PubMed  Google Scholar 

  99. Casolo G. Heart rate variability in patients with heart failure. In: Malik M, Gamm AJ, editors. Heart rate variability. Armonk: Futura; 1995. p. 449–65.

    Google Scholar 

  100. Stenfenelli T, Bergler-Klein J, Globits S, et al. Heart rate behavior at different stages of heart failure. Eur Heart J. 1992;13:902–7.

    Google Scholar 

  101. Magdid NM, et al. Diminished heart rate variability in patients with sudden cardiac death. Circulation. 1985;72(Suppl III): iii-241.

    Google Scholar 

  102. Pagani M, Malfatto G, Peirini S, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst. 1988;23:143–53.

    CAS  PubMed  Google Scholar 

  103. Schumer MP, Joyner SA, Pfeifer MA. Cardiovascular autonomic neuropathy testing in patients with diabetes. Diabetes Spectr. 1998;11:227–31.

    Google Scholar 

  104. Karpen J, Ortiz R, Shoemaker WC. Parasympathetic and sympathetic monitoring in pain management. Online publication at Pain.com; 14 Jan 2010.

    Google Scholar 

  105. Cong X, Ludington-Hoe SM, McCain G, Fu P. Kangaroo Care modifies preterm infant heart rate variability in response to heel stick pain: pilot study. Early Hum Dev. 2009;85(9):561–7.

    Google Scholar 

  106. Hon EH, Lee ST. Electronic evaluation of the fetal heart rate patterns preceding death. Am J Obstet Gynecol. 1965;87:814–26.

    Google Scholar 

  107. McCain GC, Fuller EO, Gartside PS. Heart rate variability and feeding bradycardia in healthy preterm infants during transition from gavage to oral feeding. Newborn Infant Nurs Rev. 2005;5(3):124–32.

    Google Scholar 

  108. McCain GC, Ludington-Hoe SM, Swinth JY, Hadeed AJ. Heart rate variability responses of a preterm infant to kangaroo care. J Obstet Gynecol Neonatal Nurs. 2005;34:689–94.

    PubMed Central  PubMed  Google Scholar 

  109. Hirst M. Heart rate variability in the fetus. In: Malik M, Gamm AJ, editors. Heart rate variability. Armonk: Futura; 1995. p. 517–31.

    Google Scholar 

  110. Shoemaker WC, Bernad P, Colombo J. ANS monitoring in closed head injury patients. In: Bernad P, editor. Closed head injury. Newark: LexisNexis Group; 2006. p. 481–97.

    Google Scholar 

  111. Shoemaker WC, Wo CCJ, Bishop MH. Multicenter trial of a new thoracic electric bio-impedance device for cardiac output estimation. Crit Care Med. 1994;22:1907–12.

    CAS  PubMed  Google Scholar 

  112. Wo CCJ, et al. Noninvasive estimations of cardiac output and circulatory dynamics in critically ill patients. Curr Opinion Crit Care. 1995;1:211–8.

    Google Scholar 

  113. Shoemaker WC, Belzberg H, Wo CCJ, Milzman DP, Pasquale L, Baga L, Fuss MA, Fulda GJ, Yarbrough K, Van de Water JP. Multicenter study of noninvasive monitoring as alternative to invasive monitoring in early management of acutely ill emergency patients. Chest. 1998;114:1643–52.

    CAS  PubMed  Google Scholar 

  114. Colombo J, Iffrig K, Wo CCJ, Aysin E, Aysin B, Colombo A, Shoemaker WC. Autonomic function can evaluate brain stem function to determine viability of life. Society Critical Care Medicine, 36th Critical Care Congress. Orlando, 17–21 Feb 2007.

    Google Scholar 

  115. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2002;345:1368–77.

    Google Scholar 

  116. Shoemaker WC, Colombo A, Colombo J. ANS-based early goal-directed therapy in the treatment of severe sepsis and septic shock: preliminary evidence. Presented at the American College of Chest Physicians Annual Meeting, 31 Oct–2 Nov 2005.

    Google Scholar 

  117. Colombo J, Shoemaker WC, Wo CCJ, Aysin E, Belzberg H. Role of autonomic activity in the hemodynamic pattern of septic shock. Presented at the 72nd annual international scientific assembly of the American College of Chest Physicians, 2006.

    Google Scholar 

  118. Hankeln KB, Senker R, Schwarten JN, et al. Evaluation of prognostic indices based on hemodynamic and oxygen transport variables in shock patients with ARDS. Crit Care Med. 1987;15:1–7.

    CAS  PubMed  Google Scholar 

  119. Bishop MW, Shoemaker WC, Kram HB, Ordog GJ, et al. Prospective randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation end points in severe trauma. J Trauma. 1995;38:780–7.

    CAS  PubMed  Google Scholar 

  120. Bishop MW, Shoemaker WC, Appel PL, et al. Relationship between supranormal values, time delays and outcome in severely traumatized patients. Crit Care Med. 1993;21:56–61.

    CAS  PubMed  Google Scholar 

  121. Wang X, Sun HH, Adamson D, Van De Water JM. An impedance cardiography system: a new design. Ann Biomed Eng. 1989;17:535–56.

    CAS  PubMed  Google Scholar 

  122. Wang X, Sun HH, Van de Water JM. An advance signal processing technique for impedance cardiography. IEEE Trans Biomed Eng. 1995;42:224–30.

    CAS  PubMed  Google Scholar 

  123. Tremper KK, Waxman K, Shoemaker WC. Effects of hypoxia and shock on transcutaneous PO2 values in dogs. Crit Care Med. 1979;7:526–31.

    CAS  PubMed  Google Scholar 

  124. Tremper KK, Shoemaker W. Transcutaneous oxygen monitoring of critically ill adults with and without low flow shock. Crit Care Med. 1981;9:706–9.

    CAS  PubMed  Google Scholar 

  125. Severinghaus JW, Stafford M, Thunstrom A. Estimation of skin metabolism and blood flow with tcPO2 and tcPCO2 electrodes by cuff occlusion of the circulation. Acta Anaesthesiol Scand Suppl. 1978;68:9–15.

    CAS  PubMed  Google Scholar 

  126. Tremper KK, Shoemaker WC, Shippy CR, et al. Transcutaneous carbon dioxide monitoring on adult patients in the ICU and operating room. Crit Care Med. 1981;9:752–5.

    CAS  PubMed  Google Scholar 

  127. Tremper KK, Huxtable RF. Dermal heat transport analysis for transcutaneous O2 measurements. Acta Anaesthesiol Scand Suppl. 1978;68:4–8.

    CAS  PubMed  Google Scholar 

  128. Tremper KK, Waxman K, Bowman R, et al. Continuous transcutaneous oxygen monitoring during respiratory failure, cardiac decompensation, cardiac arrest, and CPR. Crit Care Med. 1980;8:337–81.

    Google Scholar 

  129. Tatevossian RG, Wo CCJ, Velmahos GC, et al. Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med. 2000;28:2248–53.

    CAS  PubMed  Google Scholar 

  130. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest. 1988;94:1176–84.

    CAS  PubMed  Google Scholar 

  131. Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117(4):716–30.

    PubMed  Google Scholar 

  132. Uijtdehaage SH, Thayer JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;3:107–10.

    Google Scholar 

  133. Williams CA, Lopes P. The influence of ventilator control on heart rate variability in children. J Sports Sci. 2002;5:407–15.

    Google Scholar 

  134. Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003;23:365–72.

    PubMed  Google Scholar 

  135. Vinik AI, Arora RR, Colombo J. Age matched attenuation of both autonomic branches in chronic disease: II. Diabetes mellitus. Cleveland clinic heart-brain summit, Cleveland Clinic Lou Ruvo Center for Brain Health. Las Vegas, 23–24 Sep 2010.

    Google Scholar 

  136. Gelin L-E. Studies in the anemia of injury. Acta Chir Scand Suppl. 1956;210:81–95.

    Google Scholar 

  137. Shoemaker WC, Appel PL, Kram HB. Role of oxygen debt in the development of organ failure, sepsis and death in high-risk surgical patients. Chest. 1992;102:208–15.

    CAS  PubMed  Google Scholar 

  138. Shoemaker WC, Bayard DS, Botnen A, Wo CCJ, et al. Mathematical program for outcome prediction and therapeutic support for trauma beginning within 1 hour of admission. Crit Care Med. 2005;33:1499–506.

    PubMed  Google Scholar 

  139. Robertson D, Bisggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. 3rd ed. Waltham: Academic; 2012.

    Google Scholar 

  140. Boyd O, Grounds M, Bennett D. Preoperative increase of oxygen delivery reduces mortality in high risk surgical patients. JAMA. 1993;270:2699–707.

    CAS  PubMed  Google Scholar 

  141. Parati, G. and Rizzoni D. Assessing the prognostic relevance of blood pressure variability: discrepant information from different indices. J Hypertens. 2005;23(3):483–6.

    Google Scholar 

  142. Yu M, Levy MM, Smith P, Takiguchi SA, Myers SA. Effect of maximizing oxygen delivery on mortality and mortality rates in critically ill patients: a prospective randomized controlled study. Crit Care Med. 1993;21:830–8.

    CAS  PubMed  Google Scholar 

  143. Scalea TM, Simon HM, Duncan AO, Atweh NA, Schafani SJ, Phillips TF, Shaftan GW. Geriatric blunt multiple trauma: improved survival with early invasive monitoring. J Trauma. 1990;30:29–34.

    Google Scholar 

  144. Wilson J, Woods I, Faucett J, Whall R, Dibb W, Morris C, McManus E. Reducing the risk of major elective surgery: randomized controlled trial of preoperative optimization of oxygen delivery. Brit Med J. 1999;318:1099–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Berlauk JF, Abrams JH, Gilmour IJ. Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. Ann Surg. 1991;214:189–97.

    Google Scholar 

  146. Moore FA, Haemel JB, Moore EE, Whitehill TA. Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma. 1992;33:58–65.

    CAS  PubMed  Google Scholar 

  147. Yu M, Burchell S, Hasaniya NWMA, Takanishi DM, Myers SA. Relationship of mortality to increasing oxygen delivery in patients >50 years of age: a prospective, randomized trial. Crit Care Med. 1998;26:1011–9.

    CAS  PubMed  Google Scholar 

  148. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high risk patients. Crit Care Med. 2002;30:1686–92.

    PubMed  Google Scholar 

  149. Colombo J, Shoemaker WC, Wo CCJ, Aysin E, Belzberg H. Gender differences of hemodynamic and autonomic activity in septic shock. Presented at the 72nd annual international scientific assembly of the American College of Chest Physicians;. 2006.

    Google Scholar 

  150. Dutton R, Shoemaker WC, Blood C, Woo C, Colombo J. Examination of real-time heart rate variability during active hemorrhage. Navy Report, NHRC, San Diego; 2001.

    Google Scholar 

  151. Barak Y, David D, Keselbrener L, Akselrod S. Autonomic response to hypobaric hypoxia assessed by time-dependent frequency decomposition of heart rate. Aviat Space Environ Med. 2001;72(11):992–1000.

    CAS  PubMed  Google Scholar 

  152. Gordon D, Herrera VL, McAlpine L, Cohen RJ, Akselrod S, Lang P, Norwood WI. Heart-rate spectral analysis: a noninvasive probe of cardiovascular regulation in critically ill children with heart disease. Pediatr Cardiol. 1988;9(2):69–77.

    CAS  PubMed  Google Scholar 

  153. Shoemaker WC, Wo CCJ, Demetriades D. Early physiological patterns in acute illness and accidents. New Horiz. 1996;4:395–412.

    CAS  PubMed  Google Scholar 

  154. Guilleminault C, Faul JL, Stoohs R. Sleep-disordered breathing and hypotension. Am J Respir Crit Care Med. 2001;164(7):1242–7.

    Google Scholar 

  155. Shoemaker WC, Wo CCJ, Chan L, Ramicone E, Kamel ES, Velmahos GC, Belzberg H. Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest. 2001;120:528–37.

    CAS  PubMed  Google Scholar 

  156. Shoemaker WC, Wo CCJ, Thangathurai D, et al. Hemodynamic patterns of survivors and non-survivors during high risk elective surgical operations. World J Surg. 1999;23:1264–71.

    CAS  PubMed  Google Scholar 

  157. Shoemaker WC, Wo CCJ, Yu S, Farjam F, Thangathuria D. Invasive and noninvasive haemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department. Eur J Emerg Med. 2000;7:169–75.

    CAS  PubMed  Google Scholar 

  158. Raaijmakers E, Faes TJC, Scholton RJPM, et al. A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med. 1999;27:1203–13.

    CAS  PubMed  Google Scholar 

  159. Knisely MH, Block EH, Eliot TS. Warner l: sludged blood. Science. 1947;106:431.

    CAS  PubMed  Google Scholar 

  160. Chidsey CA, Braunwald E. Sympathetic activity and neurotransmitter depletion in congestive heart failure. Pharmacol Rev. 1966;18:685–700.

    CAS  PubMed  Google Scholar 

  161. Sibley DR, Lefkowitz RJ. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor coupled adenylate cyclase system as a model. Nature. 1985;317:124–9.

    CAS  PubMed  Google Scholar 

  162. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248(1 pt 2):H151–3.

    CAS  PubMed  Google Scholar 

  163. Saul JP. Beat-to-beat variations of heart rate reflect modulation of cardiac outflow. Physiology. 1990;5:32–7.

    Google Scholar 

  164. Toledo E, Pinhas I, Aravot D, Almog Y, Akselrod S. Functional restitution of cardiac control in heart transplant patients. Am J Physiol Regul Integr Comp Physiol. 2002;282(3):R900–8.

    CAS  PubMed  Google Scholar 

  165. Bernardi L, Bianchini B, Spadacini G, Leuzzi S, Valle F, Marchesi E, Passino C, Calciati A, Viganó M, Rinaldi M, et al. Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval. Circulation. 1995;92(10):2895–903.

    CAS  PubMed  Google Scholar 

  166. Gordon D, Cohen RJ, Kelly D, Akselrod S, Shannon DC. Sudden infant death syndrome: abnormalities in short term fluctuations in heart rate and respiratory activity. Pediatr Res. 1984;18(10):921–6.

    CAS  PubMed  Google Scholar 

  167. Sadeh D, Shannon DC, Abboud S, Saul JP, Akselrod S, Cohen RJ. Altered cardiac repolarization in some victims of sudden infant death syndrome. N Engl J Med. 1987;317(24):1501–5.

    CAS  PubMed  Google Scholar 

  168. Shannon DC, Kelly DH, Akselrod S, Kilborn KM. Increased respiratory frequency and variability in high risk babies who die of sudden infant death syndrome. Pediatr Res. 1987;22(2):158–62.

    CAS  PubMed  Google Scholar 

  169. Davidson S, Reina N, Shefi O, Hai-Tov U, Akselrod S. Spectral analysis of heart rate fluctuations and optimum thermal management for low birth weight infants. Med Biol Eng Comput. 1997;35(6):619–25.

    CAS  PubMed  Google Scholar 

  170. Shefi O, Davidson S, Maayan A, Akselrod S. The effect of thermal stimulation on the heart-rate variability in neonates. Early Hum Dev. 1998;52(1):49–66.

    CAS  PubMed  Google Scholar 

  171. Verklan MT, Padhye NS. Spectral analysis of heart rate variability: an emerging tool for assessing stability during transition to extrauterine life. J Obstet Gynecol Neonatal Nurs. 2004;33:256–65.

    PubMed  Google Scholar 

  172. Sahni R, Schulze KF, Kashyap S, Ohira-Kist K, Fifer WP, Myers MM. Maturational changes in heart rate variability in low birth weight infants. Dev Psychobiol. 2000;37:73–81.

    CAS  PubMed  Google Scholar 

  173. Chatow U, Davidson S, Reichman BL, Akselrod S. Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuation. Pediatr Res. 1995;37:294–302.

    CAS  PubMed  Google Scholar 

  174. Mehta SK, Super DM, Salvator A, Singer L, Connuck D, Fradley LG, et al. Heart rate variability in cocaine-exposed newborn infants. Am Heart J. 2001;142:828–32.

    CAS  PubMed  Google Scholar 

  175. Henslee JA, Schechtman VL, Lee MY, Harper RM. Developmental patterns of heart rate and variability in prematurely-born infants with apnea of prematurity. Early Hum Dev. 1997;47:35–50.

    CAS  PubMed  Google Scholar 

  176. Griffin MP, O’Shea TM, Bissonette EA, Harrell FE, Lake DE, Moorman JR. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis like illness. Pediatr Res. 2003;53:920–6.

    PubMed  Google Scholar 

  177. Smith SL. Heart period variability of intubated very low- birth-weight infants during incubator care and maternal holding. Am J Crit Care. 2003;12:54–64.

    PubMed  Google Scholar 

  178. Feldman R, Eidelman AI. Skin-to-skin contact (kangaroo care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev Med Child Neurol. 2003;45:274–81.

    PubMed  Google Scholar 

  179. Schrod L, Walter J. Effect of head-up body tilt position on autonomic function and cerebral oxygenation in preterm infants. Biol Neonate. 2002;81:255–9.

    PubMed  Google Scholar 

  180. Eiselt M, Curzi-Dascalova L, Clairambault J, Kauffmann F, Medigue C, Peirano P. Heart-rate variability in low-risk prematurely born infants reaching normal term: a comparison with full-term newborns. Early Hum Dev. 1993;32:183–95.

    CAS  PubMed  Google Scholar 

  181. Rothwell PM, Algra A, Amarenco P. Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 2011;377(9778):1681–92.

    PubMed  Google Scholar 

  182. Shoemaker WC, Bernad PG, Colombo J. ANS monitoring in closed head injury patients. Autonomic and hemodynamic patterns after head trauma and brain death. Society Critical Care Medicine, 36th critical care congress, Orlando, 17–21 Feb 2007.

    Google Scholar 

  183. Belzberg H, Colombo J, Shoemaker WC, Wo CCJ. Autonomic and hemodynamic patterns after head trauma and brain death. Society Critical Care Medicine, 36th Critical Care Congress. Orlando, 17–21 Feb 2007.

    Google Scholar 

  184. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Google Scholar 

  185. Korpelainen JT, et al. Abnormal heart rate variability reflecting autonomic dysfunction in brainstem infarction. Acta Neurol Scand. 1996;94:337–42.

    CAS  PubMed  Google Scholar 

  186. Korpelainen JT, et al. Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke. 1996;27:2059–63.

    CAS  PubMed  Google Scholar 

  187. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction. Stroke. 1994;25:113–6.

    CAS  PubMed  Google Scholar 

  188. Orlandi G, et al. Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand. 2000;102:317–21.

    CAS  PubMed  Google Scholar 

  189. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  190. Munakata M, Kameyama J, Nunokawa T, Ito N, Yoshinaga K. Altered Mayer wave and baroreflex profiles in high spinal cord injury. Am J Hypertens. 2001;14(2):141–8.

    CAS  PubMed  Google Scholar 

  191. Arora RR, Ghosh Dastidar S, Colombo J. Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium. Kauai, 29 Oct–1 Nov 2008.

    Google Scholar 

  192. Brown RS, Mohr PA, Carey JS, Shoemaker WC. Cardiovascular changes after cranial cerebral injury and increased intracranial pressure. Surg Gynecol Obstet. 1967;125:1205–11.

    CAS  PubMed  Google Scholar 

  193. Brown RS, Shoemaker WC. Sequential hemodynamic changes in patients with head injury. Ann Surg. 1973;177:187–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Schulte am Esch J, Murday H, Pfeifer G. Haemodynamic changes in patients with severe head injury. Acta Neurochir. 1980;54:243–50.

    Google Scholar 

  195. Popp AJ, Gottlieb ME, Paloski WH, et al. Cardiopulmonary hemodynamics in patients with serious head injury. J Surg Res. 1982;32:416–21.

    CAS  PubMed  Google Scholar 

  196. McLeod AA, Neil-Dwyer G, Meyer CHA, et al. Cardiac sequelae of acute head injury. Br Heart J. 1982;47:221–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Clifton GL, Robertson CS, Kyper K, et al. Cardiovascular response to severe head injury. J Neurosurg. 1983;59:447–54.

    CAS  PubMed  Google Scholar 

  198. Deutschman CS, Konstantinides FN, Raup S, Thienprasit P, Cerra FB. Physiological and metabolic response to isolated closed-head injury. J Neurosurg. 1986;64:89–98.

    CAS  PubMed  Google Scholar 

  199. Vicario SJ, Coleman R, Cooper MA, Thomas DM. Ventilatory status early after head injury. Ann Emerg Med. 1983;12:145–8.

    CAS  PubMed  Google Scholar 

  200. Nicholls TP, Shoemaker WC, Wo CCJ, Gruen JP, et al. Tissue oxygenation after head trauma is related to survival; a preliminary report. J Am Coll Surg. (in Press).

    Google Scholar 

  201. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet. 1974;ii:81–3.

    Google Scholar 

  202. Cushing H. Concerning a definitive regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression. Bull Hosp Johns Hopkins. 1901;12:290–2.

    Google Scholar 

  203. Davis DH, Sundt Jr TM. Relationship of cerebral blood flow to cardiac output, mean arterial pressure, blood volume, and alpha and beta blockade in cats. J Neurosurg. 1980;52:745–54.

    CAS  PubMed  Google Scholar 

  204. Richardson TQ, Fermoso JD, Pugh GO. Effect of acutely elevated intracranial pressure on cardiac output and other circulatory factors. J Surg Res. 1965;5:318–22.

    Google Scholar 

  205. Price HL. Effects of carbon dioxide on the cardiovascular system. Anesthesiology. 1960;21:652–63.

    CAS  PubMed  Google Scholar 

  206. Sechzer PH, Egbert LD, Linde HW, et al. Effect of CO2 inhalation on arterial pressure, EKG, catecholamines and 17-OH corticosteroids in normal man. J Appl Phys. 1960;15:454–8.

    CAS  Google Scholar 

  207. Turney SZ, Labrosse E, Paul R, et al. The sympathetic response in head trauma; catecholamines and cardiopulmonary changes upon altering PCO2. Ann Surg. 1972;77:86–92.

    Google Scholar 

  208. Rowe MI, Weinberg G. Transcutaneous oxygen monitoring in shock and resuscitation. J Pediatr Surg. 1979;14:773–8.

    CAS  PubMed  Google Scholar 

  209. Jäättelä A, Ahlo A, Avikainen V, et al. Plasma catecholamines in severely injured patients: a prospective study on 45 patients with multiple injuries. Br J Surg. 1975;62:177–81.

    PubMed  Google Scholar 

  210. Halter JB, Pflug AE, Porte Jr D. Mechanisms of plasma catecholamines increases during surgical stress in man. J Clin Endocrinol Metab. 1977;45:936–44.

    CAS  PubMed  Google Scholar 

  211. Maddens M, Sowers J. Catecholamines in critical care. Crit Care Clin. 1987;3:871–2.

    CAS  PubMed  Google Scholar 

  212. Waxman K. Physiologic response to injury. In: Shoemaker WC, Ayres SA, Grenvik A, Holbrook P, editors. Textbook of critical care. Philadelphia: W.B. Saunders Co.; 1995. p. 1395–402.

    Google Scholar 

  213. Waxman K. Shock: ischemia, reperfusion and inflammation. New Horiz. 1996;4:153–60.

    CAS  PubMed  Google Scholar 

  214. Gann DS, Lilly MP. The neuroendocrine response to multiple trauma. World J Surg. 1993;7:101–18.

    Google Scholar 

  215. Lubbers DW. Theoretical basis of the transcutaneous blood gas measurements. Crit Care Med. 1981;9:721–33.

    CAS  PubMed  Google Scholar 

  216. Boyd O, Bennett D. Enhancement of perioperative tissue perfusion as a therapeutic strategy for major surgery. New Horiz. 1996;4:453–65.

    CAS  PubMed  Google Scholar 

  217. Zornow MH, Prough DS. Fluid management in patients with traumatic head injury. New Horiz. 1995;3:488–98.

    CAS  PubMed  Google Scholar 

  218. Tonnesen AS. Hemodynamic management of brain injured patients. New Horiz. 1996;4:499–05.

    Google Scholar 

  219. Zhuang J, Shackford SR, Schomaker JD, Pietropaoli JA. Colloid infusion after brain injury: effect on intracranial pressure, cerebral blood flow, and O2 delivery. Crit Care Med. 1995;23:140–8.

    CAS  PubMed  Google Scholar 

  220. Bullock R, Chesnut RM, Clifton G, Ghujar J, et al. Consensus conference. J Neurotrauma. 1996;11:667–709.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Critical Care. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics