Skip to main content

Gradient-Based Similarity in the Stable Atmospheric Boundary Layer

  • Chapter
  • First Online:
Achievements, History and Challenges in Geophysics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

A structure of the stably-stratified atmospheric boundary layer is examined in terms of a novel gradient-based similarity theory. The presented approach introduces similarity scales based on the vertical gradient of the potential temperature, contrary to the traditional method, which is based on momentum and temperature fluxes. The length scale, defined using the semi-empirical form of the mixing length, is demonstrated to be effective in the entire stable boundary layer. In more complex cases, an alternative formulation of the mixing length, based on vertical velocity or temperature variances, can be employed. The empirical similarity functions of the Richardson number are expressed in analytical form, valid in the entire stable boundary layer. The introduced similarity approach allows for evaluating the minimum values of the dimensionless turbulent heat flux and the temperature standard deviation as functions of the Richardson number. It can also be used as a closure scheme for a single column model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HD, Holm DD, Mardsen JE, Ratiu T (1984) Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys Rev Lett 52:2352–2355

    Article  Google Scholar 

  • Anderson PS (2009) Measurement of Prandtl number as function of Richardson number avoiding self-correlation. Boundary-Layer Meteorol 131:345–362

    Article  Google Scholar 

  • Andreas EL, Hill RJ, Gosz JR, Moore DI, Otto WD, Sarma AD (1998) Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorol 86:379–408

    Article  Google Scholar 

  • Andreas EL, Fairall CW, Guest PS, Persson POG (1999) An overview of the SHEBA atmospheric surface flux program. In: 13th symposium on boundary layers and turbulence. American Meteorological Society, Proceedings, Dallas, TX, pp 550–555

    Google Scholar 

  • Andreas EL, Fairall CW, Grachev AA, Guest PS, Horst TW, Jordan RE, and Persson POG (2003) Turbulent transfer coefficients and roughness lengths over sea ice: the SHEBA results. In: Seventh conference on polar meteorology and oceanography and joint symposium on high-latitude climate variations, American Meteorological Society. 12–16 May 2003, Hyannis, Massachusetts, AMS Preprint CD-ROM

    Google Scholar 

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán Constant in the Atmospheric Surface Layer. J Fluid Mech 559:117–149

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054

    Article  Google Scholar 

  • Banta RM (2008) Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys 56:58–87

    Article  Google Scholar 

  • Barenblatt GI (1996) Scaling, self-similarity laws, and intermediate asymptotes. In: Cambridge Texts in Applied Mathematics, vol 14. Cambridge University Press, Cambridge, p 380

    Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteor 30:327–341

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in neutral atmosphere. J Geoph Res 67:3095–3103

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer, Chapter 2. In: Haugen DA (ed) Workshop on Micrometeorology. American Meteorological Society, Boston, pp 67–100

    Google Scholar 

  • Businger JA, Miyake M, Dyer AJ, Bradley F (1967) On the direct determination of the turbulent heat flux near the ground. J Appl Meteor 6:1025–1032

    Article  Google Scholar 

  • Cheng Y, Canuto VM, Howard AM (2002) An improved model for the turbulent PBL. J Atmos Sci 59:1550–1565

    Article  Google Scholar 

  • Churchill SW (2002) A reinterpretation of the turbulent Prandtl number. Ind Eng Chem Res 41:6393–6401

    Article  Google Scholar 

  • Coulter RL, Doran JC (2002) Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol 105:329–349

    Article  Google Scholar 

  • Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56:100–113

    Article  Google Scholar 

  • Delage Y (1974) A numerical study of the nocturnal atmospheric boundary layer. Quart J Roy Meteorol Soc 100:351–364

    Article  Google Scholar 

  • Esau I, Grachev A (2007) Turbulent Prandtl number in stably stratified atmospheric boundary layer: intercomparison between LES and SHEBA data. e-WindEng, 006: 01–17

    Google Scholar 

  • Fernando HJS (2003) Turbulent paches in stratified shear flow. Phys Fluids 15:3164–3169

    Article  Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence, Atmos Sci Letters ASL.153

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007a) SHEBA Flux profile relationships in the stable atmospheric boundary layer’. Boundary-Layer Meteorol 124:315–333

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007b) On the turbulent Prandtl Number in the Stable Atmospheric Boundary Layer. Boundary-Layer Meteorol 125:329–341

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2008) Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys 56:142–166

    Article  Google Scholar 

  • Grachev AA (2012) Private communication

    Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson OG (2013) The critical richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82

    Article  Google Scholar 

  • Holtslag AAM and De Bruin FTM (1988) Applied modeling of night-time surface energy balance over land. J Appl Meteor 27:689–704

    Article  Google Scholar 

  • Huang J, Bou-Zeid E, Golaz JC (2013) Turbulence and vertical fluxes in the stable boundary layer. Part II: a novel mixing-length model. J Atmos Sci 111:793–815

    Google Scholar 

  • Hunt JCR, Kaimal JC, Gaynor JE (1985) Some observations of turbulence structure in stable layers. Quart J Roy Meteorol Soc 130:2087–2103

    Google Scholar 

  • Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J Fluid Mech 212:637–662

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart J Roy Meteorol Soc 130:2087–2103

    Article  Google Scholar 

  • Kukharets VP, Tsvang LR (1998) Atmospheric turbulence characteristics over a temperature-inhomogeneous land surface. Part I: statistical characteristics of small-scale spatial inhomogeneities of land surface temperature. Boundary-Layer Meteorol 86:89–101

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulence mixing in the surface layer of the atmosphere. Trudy Geof Inst AN SSSR 24:163–187

    Google Scholar 

  • Newsom KR, Banta RM (2003) Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J Atmos Sci 60:16–33

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Oyha YD, Neff E, Meroney EN (1997) Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol 83:139–161

    Article  Google Scholar 

  • Oyha YD (2001) Wind tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98:57–82

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107: 8045, dol: 10.1029/2000JC000705

  • Prandtl L (1932) Meteorologische anwendungen der stromungslehre. Beitr Phys Atmosph 19:188–202

    Google Scholar 

  • Raasch S, Etling D (1991) Numerical simulations of rotating turbulent thermal convection. Beitr Phys Atmos 64:185–199

    Google Scholar 

  • Raasch S, Schröter M (2001) PALM: a large-eddy simulation model performing on massively parallel computers. Meteor Z 10:363–372

    Article  Google Scholar 

  • Sorbjan Z (1986a) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34:377–397

    Article  Google Scholar 

  • Sorbjan Z (1986b) On the vertical distribution of passive species in the atmospheric boundary layer. Boundary-Layer Meteorol 35:73–81

    Article  Google Scholar 

  • Sorbjan Z (1986c) Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Boundary-Layer Meteorol 35:257–275

    Article  Google Scholar 

  • Sorbjan Z (1988) Structure of the stably-stratified boundary layer during the Sesame-1979 experiment. Boundary-Layer Meteorol 44:255–260

    Article  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, New Jersey, p 316

    Google Scholar 

  • Sorbjan Z (2006a) Local structure of turbulence in stably-stratified boundary layers. J Atmos Sci 63:526–537

    Article  Google Scholar 

  • Sorbjan Z (2006b) Comments on “Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer”. Q J Roy Meteorol Soc B 617(132):1371–1373

    Article  Google Scholar 

  • Sorbjan Z, Balsley BB (2008) Microstructure of turbulence in the nocturnal boundary layer. Boundary-Layer Meteorol 129:191–210

    Article  Google Scholar 

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. Quart J Roy Meteorol Soc 136:1243–1254

    Google Scholar 

  • Sorbjan Z, Grachev AA (2010) An evaluation of the flux-gradient relationship in the stable boundary layer. Boundary-Layer Meteorol 135:385–405

    Article  Google Scholar 

  • Sorbjan Z (2012a) The height correction of similarity functions in the stable boundary layer. Boundary-Layer Meteorol 142:21–31

    Article  Google Scholar 

  • Sorbjan Z (2012b) A study of the stable boundary layer based on a single-column K-theory model. Boundary-Layer Meteorol 142:33–53

    Article  Google Scholar 

  • Sorbjan Z, Czerwinska A (2013) Statistics of turbulence in the stable boundary layer affected by gravity waves. Boundary-Layer Meteorol 148(1):73–91

    Article  Google Scholar 

  • Sorbjan Z (2013) Modelling of the evolving stable boundary layer. Boundary-Layer Meteorol DOI 10.1007/s10546-013-9893-z

  • Sullivan PP (2014) Structures, temperature fronts, and intermittent behavior in stable boundary layers. In: 21st Symposium on boundary layers and turbulence, 9–13 Jun 2014, Leeds, United Kingdom

    Google Scholar 

  • Tsvang LR, Kukharets VP, Perepelkin VG (1998) Atmospheric turbulence characteristics over a temperature-inhomogeneous Land Surface Part II: the effect of small-scale inhomogeneities of surface temperature on some characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 86:103–124

    Article  Google Scholar 

  • Van de Wiel BJH, Moene A, Hartogenesis G, De Bruin HA, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layeor over land. Part III. A classification for observations during CASES-99. J Atmos Sci 60:2509–2522

    Article  Google Scholar 

  • Van de Wiel BJH, Basu S, Moene AF, Jonker HJJ, Steenveld GJ, Baas P, Holtslag AAM (2011) Comments on ’An extremum solution of the Monin-Obukhov similarity equations”. J. Atmos Sci 68:1405–1408

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospecral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672

    Article  Google Scholar 

  • Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 111:431–447

    Article  Google Scholar 

  • Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux-profile relationships for wind speed, φ m , and temperature, φ h , for the stable atmospheric boundary layer. Nonlin Processes Geophys 13:185–203

    Article  Google Scholar 

  • Zilitinkevich S, Elperin T, Kleeorin N, Rogachevskii I, Esau I, Mauritsen T, Miles M (2008) Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Quart J Roy Meteorol Soc 134:793–799

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the US National Science Foundation grant ATM-0938293, and by the Polish National Science Centre grant 0572/B/P01/2011/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Sorbjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sorbjan, Z. (2014). Gradient-Based Similarity in the Stable Atmospheric Boundary Layer. In: Bialik, R., Majdański, M., Moskalik, M. (eds) Achievements, History and Challenges in Geophysics. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-07599-0_20

Download citation

Publish with us

Policies and ethics