Skip to main content

Time Scales: Towards Extending the Finite Difference Technique for Non-homogeneous Grids

  • Chapter
  • First Online:
Achievements, History and Challenges in Geophysics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

Tremendous progress in seismology over last years is greatly due to availability of high quality seismic waveforms. Their availability prompts the new mathematical and numerical algorithms for their more detailed analysis. This analysis usually takes a form of the inverse problems—an estimation of physical parameters from seismic waveforms called the full waveform inversion (FWI). No matter which inversion algorithm is used, the FWI technique requires precise modeling of synthetic seismograms for a given lithological model. This is by no means a trivial task from the algorithmic point of view, as it requires solving (usually numerically) the wave equation describing propagation of seismic waves in complex 3D media, taking into account such effects as spatial heterogeneities of media properties, anisotropy, and energy attenuation, to name a few. Although many numerical algorithms have been developed to handle this task, there is still a need for further development as there is no single universal approach equally good for all tasks in hand. In this chapter, the possibility of using the Time Scale Calculus formalism to advance the synthetic seismograms calculation is discussed. This modern approach developed the late 1990s with the aim of unifying analytical and numerical calculations provides the very promising basement for developing new computational methods for seismological, or more general geophysical applications. In this chapter we review the basic elements of the Time Scale Calculus keeping in mind its application in seismology but also we extend the initial concept of Hilger’s derivative towards the backward-type and central-type derivatives using the unified approach and compare their properties for various time scales. Using these results we define the second order differential operators (laplacians) and provide explicit formulas for different time scales. Finally, the formalism of time scales is used for solving 1D linear, acoustic wave equation for a velocity model with large velocity discontinuities. Based on this simple example we demonstrate that even in such a simple case using an extension of the classical finite difference schemata towards irregular grid leads to a significant improvement of computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Bohner M (1999) Basic calculus on time scales and some of it applications. Results Math 35:3–22. doi:10.1007/BF03322019

    Article  Google Scholar 

  • Agarwal R, Bohner M, O’Regan D (2002) Dynamic Equations on time scales: a survey. J Comp Appl Math 141(1-2):1–26. doi:10.1016/S0377-0427(01)00432-0

  • Aki K, Richards PG (1985) Quantitative seismology. Freeman and Co, San Francisco

    Google Scholar 

  • Atici F, Biles D, Lebedinsky A (2006) An application of time scales to economics. Math Comput Modell 43:718–726. doi:10.1016/j.mcm.2005.08.014

    Article  Google Scholar 

  • Atici F, Eloe P (2007) Fractional q-Calculus on a time scale. J Nonlinear Math Phys 14(3):341–352. doi:10.2991/jnmp.2007.14.3.4

  • Bamberger A, Glowinsky R, Tran QH (1997) Domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid changes. J Numer Anal 34:603–639

    Article  Google Scholar 

  • Bohner M, Peterson A (2001) First and second order linear dynamics equations on time scales. J Differ Equ Appl 7:767–792

    Article  Google Scholar 

  • Bouchon M (2003) Review of the discrete wavenumber method. Pure Appl Geophys 160(3–4):445–465. doi:10.1007/PL00012545

    Article  Google Scholar 

  • Carcione JM (1991) Domain decomposition for wave propagation problems. J Sci Comput 6:453–472

    Article  Google Scholar 

  • Cieslinski J (2007) Pseudospherical surfaces on time scales: a geometric definition and the spectral approach. J Phys A Math Theor 40:12525–12538. doi:10.1088/1751-8113/40/42/S02

    Article  Google Scholar 

  • Cieslinski J (2012) New definitions of exponential, hyperbolic and trigonometric functions on time scales. J Math Anal Appl 388:8–22. doi:10.1016/j.jmaa.2011.11.023

    Article  Google Scholar 

  • Courant R, Friedrichs K, Lewy H (1928) Uber die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74. doi:10.1007/BF01448839

    Article  Google Scholar 

  • Courant R, Hilbert D (1962) Methods of mathematical physics. vol 2, Wiley, New York. doi:10.1002/9783527617234

  • de Rivas E (1972) On the use of nonuniform grids in finite-difference equations. J Comput Phys 10(2):202–210. doi:10.1016/0021-9991(72)90060-5

    Article  Google Scholar 

  • Debski W (2008) Estimating the source time function by Markov Chain Monte Carlo sampling. Pure Appl Geophys 165:1263–1287. doi:10.1007/s00024-008-0357-1

    Article  Google Scholar 

  • Debski W (2010) Probabilistic inverse theory. Adv Geophys 52:1–102. doi:10.1016/S0065-2687(10)52001-6

    Article  Google Scholar 

  • Debski W, Ando M (2002) Robust and accurate seismic/acoustic ray tracer. In The 2002 Japan-Taiwan joint seminar on earthquake mechanisms and hazard. Nagoya Japan, pp 317–327

    Google Scholar 

  • Dryl M, Malinowska A, Torres D (2013) A time-scale variational approach to inflation, Unemployment and social loss. airXiv:1304.5269v1, pp 718–726

    Google Scholar 

  • Ferreira R, Torres D (2008) Higher-order calculus of variations on time scales. Springer, Berlin

    Google Scholar 

  • Gottlieb D, Gunzberger MD, Turkel E (1982) On numerical boundary tratment for hyperbolic systems for finite difference and finite element methods. SIAM-JNA 19:671–682. doi:10.1137/0719047

    Google Scholar 

  • Hilger S (1990) Analysis on measure chains—a unfied approach to continuous and discrete calculus. Res Math 18(1–2):18–56. doi:10.1007/BF03323153

    Article  Google Scholar 

  • Hilger S (1997) Differential and difference calculus—unified! Nonlinear Anal Theor Meth Appl 30:2683–2694. doi:10.1016/50362-546X(96)00204-0

    Article  Google Scholar 

  • Kaser M, Igel H (2001) Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys Prosp 49:607–619

    Article  Google Scholar 

  • Kopriva DA (1989) Domain decomposition with both spectral and finite difference methods for the accurate computation of flows with schocks. Appl Numer Math 6:141–151

    Article  Google Scholar 

  • Moczo P, Kristek J, Galis M, Chaljub E, Etienne V (2011) 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio. Geophys J Int 187(3):1645–1667. doi:10.1111/j.1365-246X.2011.05221.x

    Article  Google Scholar 

  • Moczo P, Robertsson J, Eisner L (2007) The Finite-difference time-domain method for modelling of seismic wave propagation, Advances in geophysics, vol 48. Elsevier u2013 Academic Press, New York: doi:10.1016/S0065-2687(06)48008-0

  • Obana K, Katao H, Ando M (2000) Seafloor positioning system with GPS-acoustic link for crustal dynamics observation- preliminary result from experiments in the sea. Earth Planets Space 52:415–423

    Google Scholar 

  • Pitarka A (1999) 3D Elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull Seismol Soc Am 89(1):54–68

    Google Scholar 

  • Vesnaver A (1996) Ray tracing based on Fermat’s principle in irregular grids. Geophys Prosp 44(5):741–760

    Article  Google Scholar 

  • Virieux J, Operto S, Ben-Hadj-Ali H, Brossier R, Etienne V, Sourbier F (2009) Seismic wave modeling for seismic imaging. Lead Eadge 28(5):538–544. doi:10.1190/1.3124928

  • Yamada, T., M. Ando, K. Tadokoro, K. Sato, and T. O. and (2002). Error evaluation in acoustic positioning of a single transponder. Earth Planets Space. 54, 871–881

    Google Scholar 

  • Zhang Z, Wei Z, Hong L, Xiaofei C (2013) Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling. Geophys J Int 192(3):1179–1188. doi:10.1093/gji/ggs069

    Article  Google Scholar 

Download references

Acknowledgements

This chapter was partially support by the grants No. 2011/01/B/ST10/07305 from the National Science Centre, Poland. K.W. acknowledges the financial support within the grant for young scientists no. 500-10-13 from IGF PAS. K. Nowozynski and anonymous reviewers are acknowledged for their help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Dębski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waśkiewicz, K., Dębski, W. (2014). Time Scales: Towards Extending the Finite Difference Technique for Non-homogeneous Grids. In: Bialik, R., Majdański, M., Moskalik, M. (eds) Achievements, History and Challenges in Geophysics. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-07599-0_22

Download citation

Publish with us

Policies and ethics