Skip to main content

Evolutionary Genomics of Miniature Inverted-Repeat Transposable Elements (MITEs) in Plants

  • Chapter
  • First Online:
Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life

Abstract

More and more evidence has accumulated in the past 20 years suggesting that MITEs may have played important roles in plant gene and genome evolution. With a large number of plant genomes sequenced and the development of computational programs for de novo MITE identification, a massive number of MITEs have been identified from plant genomes. The number of MITEs in a genome varied dramatically among different plant species. There is significant correlation between the number of MITEs and genome size, though there are several prominent exceptions. Some MITE families have a high copy number in a genome, probably due to one or several rounds of amplification bursts. Different MITE families in the same genome may have experienced amplification burst at different times, suggesting that their amplifications were triggered by distinct environments (such as stress) or genetic events. However, very few MITEs in plant genomes are currently active. MITEs are often distributed in gene-rich regions, and may be inserted in genes’ promoter regions or transcribed regions. They may affect (either upregulate or downregulate) the expression of nearby genes. MITEs may downregulate genes through small RNAs, which may be produced via NAT or double-stranded RNAs formed by transcribed MITE sequences. The presence/absence of MITEs as well as their potential effects on expression of nearby genes suggests that MITE may provide considerable physiological and phenotypic variations for a species. Important future studies on MITEs include the mechanisms of MITE activation and the effects of MITEs on gene and genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4(10):1283–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6(6):907–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charrier B, Foucher F, Kondorosi E, d’Aubenton-Carafa Y, Thermes C, Kondorosi A, Ratet P (1999) Bigfoot. a new family of MITE elements characterized from the Medicago genus. Plant J 18(4):431–441

    CAS  PubMed  Google Scholar 

  • Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2013) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res. doi:10.1093/nar/gkt1000

  • Chen J, Lu C, Zhang Y, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species. Mob Genet Elem 2(3):127–132

    Article  Google Scholar 

  • Chen Y, Zhou F, Li G, Xu Y (2009) MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene 436(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Dong HT, Zhang L, Zheng KL, Yao HG, Chen J, Yu FC, Yu XX, Mao BZ, Zhao D, Yao J, Li DB (2012) A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation. BMC Genomics 13:135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G (2013) Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 56(9):475–486

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3(5):329–341

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Qin S, Wessler SR (2013) Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes. BMC Genomics 14:71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38(22):e199

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho T, Wang H, Pallett D, Dalmay T (2007) Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett 581(17):3267–3272

    Article  CAS  PubMed  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19(8):1419–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421(6919):163–167

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412

    Article  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421(6919):167–170

    Article  CAS  PubMed  Google Scholar 

  • Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19(1):42–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin X, Long L, Shan X, Zhang S, Shen S, Liu B (2006) In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. J Exp Bot 57(10):2313–2323

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29(3):1005–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCue AD, Slotkin RK (2012) Transposable element small RNAs as regulators of gene expression. Trends Genet 28(12):616–623

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T (2006) Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res 14(8):831–844

    Article  CAS  PubMed  Google Scholar 

  • Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 186(1):59–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103(47):17620–17625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83(4):321–329

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108(8):1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2(2):e203

    Article  PubMed Central  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158(3):949–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago N, Herraiz C, Goni JR, Messeguer X, Casacuberta JM (2002) Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol 19(12):2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22(4):976–990

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124(8):1429–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15(8):471–478

    Article  CAS  PubMed  Google Scholar 

  • Tu Z (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 98(4):1699–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9(2):e1003255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinform 14:186

    Article  Google Scholar 

  • Yang G, Dong J, Chandrasekharan MB, Hall TC (2001) Kiddo, a new transposable element family closely associated with rice genes. Mol Genet Genomics 266(3):417–424

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Lee YH, Jiang Y, Shi X, Kertbundit S, Hall TC (2005) A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell 17(5):1559–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HH, Xu HE, Shen YH, Han MJ, Zhang Z (2013) The origin and evolution of six miniature inverted-repeat transposable elements in Bombyx mori and Rhodnius prolixus. Genome Biol Evol 5(11):2020–2031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci USA 98(22):12572–12577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China [grant no. 31300299 and 30921002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhui Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Hu, Q., Lu, C., Kuang, H. (2014). Evolutionary Genomics of Miniature Inverted-Repeat Transposable Elements (MITEs) in Plants. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_7

Download citation

Publish with us

Policies and ethics