Skip to main content

Main Definitions and Basic Facts

  • Chapter
  • First Online:
Combinatorial Algebra: Syntax and Semantics

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1328 Accesses

Abstract

This chapter introduces the main characters that will appear in this book: sets, words, graphs, automata, rewriting systems, various kinds of (universal) algebras, varieties, free algebras (including free semigroups and groups) and subshifts. We also introduce the main properties of algebras that we are interested in: the Burnside property, the finite basis property, properties of the growth function and the growth series, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This long instruction is reminiscent of some recipes from a cook book. These usually end with something like “cook for 16 minutes at 350 degrees, flipping after every 4 minutes”. That is not what you want to do with an automaton.

  2. 2.

    Note that one needs to distinguish here \(a^{n} =\mathop{\underbrace{ a \cdot \ldots \cdot a}}\limits _{n}\) from \(a^{t} = t^{-1}at\).

  3. 3.

    We do not give a definition of algorithm because everybody knows what it is, but nobody can define it precisely.

  4. 4.

    Warning: Some knowledge of elementary topology is required to read this subsection.

  5. 5.

    Note that we are using Zorn’s lemma here. The partially ordered set to which Zorn’s lemma applied is the set of all subsystems of (D, T), so that (D′, T) ≤ (D″, T) if and only if \(D' \supseteq D''\).

  6. 6.

    The set {z∣ | z |  = 1} that separates X a from X b is of course the ping-pong net.

  7. 7.

    Moreover, an infinite linear combination of elements from A + is invertible if and only if the coefficient of 1 is not 0.

References

  1. S.I. Adian, The Burnside Problem and Identities in Groups (Springer, Berlin/ New York, 1979)

    Book  Google Scholar 

  2. K.A. Baker, G.F. McNulty, H. Werner, The finitely based varieties of graph algebras. Acta Sci. Math. (Szeged) 51(1–2), 3–15 (1987)

    Google Scholar 

  3. K.A. Baker, G.F. McNulty, H. Werner, Shift-automorphism methods for inherently non-finitely based varieties of algebras. Czechoslov. Math. J. 39(1), 53–69 (1989)

    MathSciNet  Google Scholar 

  4. Yu.A. Bakhturin, A.Yu. Ol’shanski, Identity relations in finite Lie algebras. Mat. Sb. 96(4), 543–559 (1975)

    Google Scholar 

  5. J.A. Beachy, Introductory Lectures on Rings and Modules. London Mathematical Society Student Texts, vol. 47 (Cambridge University Press, Cambridge, 1999), pp. viii+238

    Google Scholar 

  6. G.M. Bergman, The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  7. R.V. Book, F. Otto, String-Rewriting Systems. Texts and Monographs in Computer Science (Springer, New York, 1993)

    Google Scholar 

  8. W. Burnside, On an unsettled question in the theory of discontinuous groups. Q. J. Pure Appl. Math. 33, 230–238 (1902)

    MATH  Google Scholar 

  9. A. Church, J.B. Rosser, Some properties of conversion. Trans. Am. Math. Soc. 39(3), 472–482 (1936)

    Article  MathSciNet  Google Scholar 

  10. A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups. I (American Mathematical Society, Providence, 1961)

    Google Scholar 

  11. P.M. Cohn, Embedding in semigroup with one-sided division. J. Lond. Math. Soc. 31, 169–181 (1956)

    Article  MATH  Google Scholar 

  12. P.M. Cohn, Embeddings in sesquilateral division semigroups. J. Lond. Math. Soc. 31, 181–191 (1956)

    Article  MATH  Google Scholar 

  13. N. Dershowitz, Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Diekert, M. Kufleitner, K. Reinhardt, T. Walter, Regular languages are Church–Rosser congruential, in Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 7392 (Springer, Berlin/New York, 2012), pp. 177–188

    Google Scholar 

  15. S. Eilenberg, Automata, Languages, and Machines, Vol. A. Pure and Applied Mathematics, vol. 58 (Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974)

    Google Scholar 

  16. N. Fine, H. Wilf, Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. W.H. Gottschalk, G.A. Hedlund, Topological Dynamics. AMS Colloquium Publications, vol. 36 (American Mathematical Society, Providence, 1955)

    Google Scholar 

  18. V.S. Guba, On some properties of periodic words. Math. Notes 72(3-4), 301–307 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Hall Jr., The Theory of Groups (Macmillan, New York, 1959)

    MATH  Google Scholar 

  20. T. Harju, D. Nowotka, The equation \(x^{i} = y^{j}z^{k}\) in a free semigroup. Semigroup Forum 68(3), 488–490 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Harju, D. Nowotka, On the equation \(x^{k} = z_{1}^{k_{1}}z_{2}^{k_{2}}\ldots z_{n}^{k_{n}}\) in a free semigroup. Theor. Comput. Sci. 330(1), 117–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. N. Jacobson, Lie Algebras (Dover, New York, 1962)

    MATH  Google Scholar 

  24. B. Jónsson, A. Tarski, On two properties of free algebras. Math. Scand. 9, 95–101 (1961)

    MATH  MathSciNet  Google Scholar 

  25. D. Knuth, P. Bendix, Simple word problems in universal algebras, in Computational Problems in Abstract Algebra, ed. by J. Leech (Pergamon, New York, 1970), pp. 263–297

    Google Scholar 

  26. R.L. Kruse, Identities satisfied by a finite ring. J. Algebra 26, 298–318 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques. Fundam. Math. 3, 76–108 (1922)

    MATH  Google Scholar 

  28. G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York/Chichester/Brisbane, 1979)

    MATH  Google Scholar 

  29. M.V. Lawson, Finite Automata (Chapman & Hall/CRC, Boca Raton, 2004)

    MATH  Google Scholar 

  30. P. Le Chenadec, Canonical Forms in Finitely Presented Algebras. Research Notes in Theoretical Computer Science (Pitman/Wiley, London/New York, 1986)

    Google Scholar 

  31. F.W. Levi, On semigroups. Bull. Calcutta Math. Soc. 36, 141–146 (1944)

    MATH  Google Scholar 

  32. D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, Cambridge/New York, 1995)

    Book  MATH  Google Scholar 

  33. M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, vol. 90 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  34. I.V. L’vov, Varieties of associative rings. I. Algebra i Logika 12(3), 269–297 (1973)

    Google Scholar 

  35. R.C. Lyndon, Identities in two-valued calculi. Trans. Am. Math. Soc. 71, 457–465 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  36. R.C. Lyndon, M.P. Schützenberger, The equation \(a^{M} = b^{N}c^{P}\) in a free group. Mich. Math. J. 9, 289–298 (1962)

    Article  MATH  Google Scholar 

  37. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111, 259–280 (1935)

    Article  MathSciNet  Google Scholar 

  38. A.I. Mal’cev, Algebraic Systems (Springer, Berlin/New York, 1973)

    Google Scholar 

  39. R. McKenzie, Tarski’s finite basis problem is undecidable. Int. J. Algebra Comput. 6, 49–104 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. R. McNaughton, S. Papert, Counter-Free Automata. With an appendix by William Henneman. M.I.T. Research Monograph, vol. 65 (M.I.T., Cambridge/Mass.-London, 1971)

    Google Scholar 

  41. G.F. McNulty, C.R. Shallon, Inherently non-finitely based finite algebras, in Universal Algebra and Lattice Theory Puebla, 1982. Volume 1004 of Lecture Notes in Mathematics (Springer, Berlin/New York, 1983), pp. 206–231

    Google Scholar 

  42. M. Morse, G.A. Hedlund, Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    MathSciNet  Google Scholar 

  43. M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)

    Article  MathSciNet  Google Scholar 

  44. V.L. Murskiǐ, The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities. Dokl. Akad. Nauk SSSR 163, 815–818 (1965)

    MathSciNet  Google Scholar 

  45. V.L. Murskiǐ, The number of k-element algebras with a binary operation which do not have a finite basis of identities. Probl. Kibernet. 35(5–27), 208 (1979)

    Google Scholar 

  46. H. Neumann, Varieties of Groups (Springer, New York, 1967)

    Book  MATH  Google Scholar 

  47. M.H.A. Newman, On theories with a combinatorial definition of “equivalence”. Ann. Math. 43(2), 223–243 (1942)

    Article  MATH  Google Scholar 

  48. S. Oates, M.B. Powell, Identical relations in finite groups. J. Algebra 1, 11–39 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  49. P. Perkins, Basic questions for general algebras. Algebra Universalis 19(1), 16–23 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  50. J. Sakarovitch, Elements of Automata Theory (trans. from the 2003 French original by Reuben Thomas) (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  51. O. Schreier, Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hambg. 5, 161–188 (1926)

    Article  MathSciNet  Google Scholar 

  52. C. Shallon, Nonfinitely based binary algebra derived from lattices, Ph.D. thesis, University of California, Los Angeles, 1979

    Google Scholar 

  53. A.S. Švarč, A volume invariant of coverings. Dokl. Akad. Nauk SSSR 105, 32–34 (1955)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sapir, M.V. (2014). Main Definitions and Basic Facts. In: Combinatorial Algebra: Syntax and Semantics. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-08031-4_1

Download citation

Publish with us

Policies and ethics