Skip to main content

Reverse-Engineering Nonlinear Analog Circuits with Evolutionary Computation

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

The design of analog circuits by hand is a difficult task, and many successful approaches to automating this design process based on evolutionary computation have been proposed. The fitness evaluations necessary to evolve linear analog circuits are relatively straightforward. However, this is not the case for nonlinear analog circuits, especially for the most general class of design tasks: reverse-engineering an arbitrary nonlinear ‘black box’ circuit. Here, we investigate different approaches to fitness evaluations in this setting. Results show that an incremental algorithm outperforms naive approaches, and that it is possible to evolve robust nonlinear analog circuits with time-domain output behavior that closely matches that of black box circuits for any time-domain input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, S., Ishizuka, M., Iba, H.: Evolving Analog Circuits by Variable Length Chromosomes. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Springer (2003)

    Google Scholar 

  2. Bongard, J., Lipson, H.: Automated Reverse Engineering of Nonlinear Dynamical Systems. PNAS 104, 9943–9948 (2007)

    Article  MATH  Google Scholar 

  3. Das, A., Vemuri, R.: An Automated Passive Analog Circuit Synthesis Framework Using Genetic Algorithms. In: Proc. IEEE VLSI 2007, pp. 145–152 (2007)

    Google Scholar 

  4. El-Turky, F.M., Nordin, R.A.: BLADES: An Expert System for Analog Circuit Design. In: Proc. IEEE ISCAS, pp. 552–555 (1986)

    Google Scholar 

  5. Harjani, R., Rutenbar, R.A., Carley, L.R.: OASYS: A Framework for Analog Circuit Synthesis. Trans. Comp.-Aided Des. Integ. Cir. Sys. 8, 1247–1266 (2006)

    Article  Google Scholar 

  6. Hedrich, L., Barke, E.: A Formal Approach to Nonlinear Analog Circuit Verification. In: Proc. IEEE ICCAD 1995, pp. 123–127 (1995)

    Google Scholar 

  7. Koh, H.Y., Sequin, C.H., Gray, P.R.: OPASYN: A Compiler for CMOS Operational Amplifiers. IEEE Trans. Comput.-Aided Des. 9, 113–125 (1990)

    Article  Google Scholar 

  8. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE Trans. Evol. Comp. 1, 109–128 (1997)

    Article  Google Scholar 

  9. Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS Opamp Synthesis by Means of a Genetic Algorithm. In: Proc. of the 32nd Design Automation Conference, pp. 433–438 (1995)

    Google Scholar 

  10. Lohn, J.D., Colombano, S.P.: Automated Analog Circuit Synthesis Using a Linear Representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 125–133. Springer, Heidelberg (1998)

    Google Scholar 

  11. Mydlowec, W., Koza, J.: Use of Time-domain Simulations in Automatic Synthesis of Computational Circuits Using Genetic Programming. In: Proc. GECCO 2000, pp. 187–197 (2000)

    Google Scholar 

  12. NG-Spice, http://sourceforge.net/projects/ngspice

  13. Rutenbar, R.A.: Analog Design Automation: Where Are We? Where Are We Going? In: Proc. l5th IEEE CICC, pp.13.1.1–13.1.8 (1993)

    Google Scholar 

  14. Rutenbar, R.A., Gielen, G.G.E., Antao, B.A.: Computer-Aided Design of Analog Integrated Circuits and Systems. Wiley-IEEE Press (2002)

    Google Scholar 

  15. Sapargaliyev, Y.A., Kalganova, T.G.: Open-Ended Evolution to Discover Analogue Circuits for Beyond Conventional Applications. Genet. Prog. Evol. Mach. 13, 411–443 (2012)

    Article  Google Scholar 

  16. Schaumann, R., Van Valeknburg, M.E.: Design of Analog Filters. Oxford University Press, New York (2001)

    Google Scholar 

  17. Schmidt, M.D., Lipson, H.: Age-Fitness Pareto Optimization. Genetic Programming Theory and Practice 8, 129–146 (2010)

    Google Scholar 

  18. Torresen, J.: A Scalable Approach to Evolvable Hardware. Genet. Prog. Evol. Mach. 3, 259–282 (2002)

    Article  MATH  Google Scholar 

  19. Zebulum, R.S., Pacheco, M.A., Vellasco, M.: Comparison of Different Evolutionary Methodologies Applied to Electronic Filter Design. In: Proc. IEEE WCCI, pp. 434–439 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore W. Cornforth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cornforth, T.W., Lipson, H. (2014). Reverse-Engineering Nonlinear Analog Circuits with Evolutionary Computation. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics