Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 723 Accesses

Abstract

There is a relative lack of basic and fundamental chapters that can serve as a starting point for researchers in the field of using algebraic geometry theory in forward error correction and especially in BTCs. Even the algebraic geometry approach found to be efficient in dealing with binary and non-binary fields. So this chapter will concentrate on the construction and decoding aspects of AG codes to build up a sound knowledge to start developing the new BTC and IBTC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berlekamp ER (1972) A survey of algebraic coding theory: lectures held at the department for automation and information. In: Courses and lectures—international centre for mechanical sciences. Springer, Berlin. http://books.google.co.uk/books?id=i-RQAAAAMAAJ

  2. Goppa VD (1981) Codes on algebraic curves. Soviet Math Dokl 24:75–91

    Google Scholar 

  3. Tsfasman MA, Vladut SG, Zink T (1982) Modular curves, Shimura curves and Goppa codes, better than Varshamov-Gilbert bound. Math Nachtrichten 109:21–28

    Article  MATH  MathSciNet  Google Scholar 

  4. Justesen J, Larsen K, Jensen H, Havemose A, Hoholdt T (1989) Construction and decoding of a class of algebraic geometry codes. IEEE Trans Inf Theory 35(4):811–821. doi:10.1109/18.32157

    Article  MATH  MathSciNet  Google Scholar 

  5. Skorobogatov AN, Vladut SG (1990) On the decoding of algebraic-geometric codes. IEEE Trans Inf Theory 36(5):1051–1060. doi:10.1109/18.57204

    Article  MATH  MathSciNet  Google Scholar 

  6. Justesen J, Larsen K, Jensen H, Hoholdt T (1992) Fast decoding of codes from algebraic plane curves. IEEE Trans Inf Theory 38(1):111–119. doi:10.1109/18.108255

    Article  MATH  MathSciNet  Google Scholar 

  7. Sakata S (1988) Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J Symbolic Comput 5(3):321–337. doi:10.1016/S0747-7171(88)80033-6. http://www.sciencedirect.com/science/article/pii/S0747717188800336

  8. Massey J (1969) Shift-register synthesis and bch decoding. IEEE Trans Inf Theory 15(1):122–127. doi:10.1109/TIT.1969.1054260

    Article  MATH  MathSciNet  Google Scholar 

  9. Berlekamp ER (1984) Algebraic coding theory. No. M-6. Aegean Park Press, California. http://books.google.co.uk/books?id=leSbQgAACAAJ

  10. Feng GL, Rao TRN (1993) Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inf Theory 39(1):37–45. doi:10.1109/18.179340

    Article  MATH  MathSciNet  Google Scholar 

  11. Duursma IM (1993) Majority coset decoding. IEEE Trans Inf Theory 39(3):1067–1070. doi:10.1109/18.256518

  12. Feng GL, Rao TRN (1994) A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans Inf Theory 40(4):1003–1012. doi:10.1109/18.335972

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng GL, Rao TRN (1995) Improved geometric Goppa codes. i. basic theory. IEEE Trans Inf Theory 41(6):1678–1693. doi:10.1109/18.476241

    Article  MATH  MathSciNet  Google Scholar 

  14. Yaghoobian T, Blake I (1994) Reed-solomon codes and their applications, Chap. 13. IEEE Press, Piscataway, USA, pp 293–314

    Google Scholar 

  15. Sakata S, Justesen J, Madelung Y, Jensen H, Hoholdt T (1995) Fast decoding of algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inf Theory 41(6):1672–1677. doi:10.1109/18.476240

    Article  MATH  MathSciNet  Google Scholar 

  16. Sakata S (1990) Extension of the Berlekamp-Massey algorithm to N dimensions. Inf Comput 84(2):207–239. doi:10.1016/0890-5401(90)90039-K. http://dx.doi.org/10.1016/0890-5401(90)90039-K

  17. Heegard C, Little J, Saints K (1995) Systematic encoding via Grobner bases for a class of algebraic-geometric Goppa codes. IEEE Trans Inf Theory 41(6):1752–1761. doi:10.1109/18.476247

    Article  MATH  MathSciNet  Google Scholar 

  18. Blake I, Heegard C, Hoholdt T, Wei V (1998) Algebraic-geometry codes. IEEE Trans Inf Theory 44(6):2596–2618. doi:10.1109/18.720550

    Article  MATH  MathSciNet  Google Scholar 

  19. Xing C, Niederreiter H, Lam KY (1999) Constructions of algebraic-geometry codes. IEEE Trans Inf Theory 45(4):1186–1193. doi:10.1109/18.761259

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu CW (1999) Determination of error values for decoding Hermitian codes with the inverse affine Fourier transform. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2302–2305. http://ci.nii.ac.jp/naid/110003208168/en/

  21. Johnston M, Carrasco R, Burrows BL (2004) Design of algebraic-geometric codes over fading channels. Electron Lett 40(21):1355–1356. doi:10.1049/el:20045392

    Article  Google Scholar 

  22. Johnston M, Carrasco RA (2005) Construction and performance of algebraic-geometric codes over awgn and fading channels. IEE Proc Commun 152(5):713–722. doi:10.1049/ip-com:20045153

    Article  Google Scholar 

  23. Berrou C, Glavieux A, Thitimajshima P (1993) Near shannon limit error-correcting coding and decoding: Turbo-codes. 1. In: IEEE ICC’93, vol 2, pp 1064–1070. doi:10.1109/ICC.1993.397441

  24. Pyndiah R, Glavieux A, Picart A, Jacq S (1994) Near optimum decoding of product codes. In: IEEE GLOBECOM ’94, pp 339–343. doi:10.1109/GLOCOM.1994.513494

  25. Picart A, Pyndiah R (1999) Adapted iterative decoding of product codes. In: IEEE GLOBECOM ’99, vol 5, pp 2357–2362. doi:10.1109/GLOCOM.1999.831724

  26. Hirst SA, Honary B, Markarian G (2001) Fast chase algorithm with an application in turbo decoding. IEEE Trans Commun 49(10):1693–1699. doi:10.1109/26.957387

    Article  MATH  Google Scholar 

  27. Martin P, Taylor D (2002) Distance based adaptive scaling in suboptimal iterative decoding. IEEE Trans Commun 50(6):869–871. doi:10.1109/TCOMM.2002.1010602

    Article  Google Scholar 

  28. Berrou C, Jezequel M, Douillard C, Kerouedan S (2001) The advantages of non-binary turbo codes. In: 2001 IEEE information theory workshop, pp 61–63. doi:10.1109/ITW.2001.955136

  29. Aitsab O, Pyndiah R (1996) Performance of reed-solomon block turbo code. In: IEEE GLOBECOM ’96, vol 1, pp 121–125. doi:10.1109/GLOCOM.1996.594345

  30. Sweeney P, Wesemeyer S (2000) Iterative soft-decision decoding of linear block codes. IEE Proc Commun 147(3):133–136. doi:10.1049/ip-com:20000300

    Article  Google Scholar 

  31. Zhou R, Picart A, Pyndiah R, Goalie A (2004a) Reliable transmission with low complexity reed-solomon block turbo codes. In: 1st international symposium on wireless communication systems, pp 193–197. doi:10.1109/ISWCS.2004.1407236

  32. Zhou R, Picart A, Pyndiah R, Goalic A (2004b) Potential applications of low complexity non-binary high code rate block turbo codes. In: IEEE MILCOM 2004, vol 3, pp 1694–1699. doi:10.1109/MILCOM.2004.1495192

  33. Diatta De Geest D, Geller B (2004) Reed-solomon turbo codes for high data rate transmission. In: IEEE 59th VTC 2004, vol 2, pp 1023–1027. doi:10.1109/VETECS.2004.1388986

  34. Piriou E, Jego C, Adde P, Le Bidan R, Jezequel M (2006) Efficient architecture for reed-solomon block turbo code. In: IEEE ISCAS 2006, p 4. doi:10.1109/ISCAS.2006.1693426

  35. Frey B, Mackay D (1999) Irregular turbo codes. In: 37th allerton conference on communication, control and computing. Allerton House, Illinois

    Google Scholar 

  36. Frey B, Mackay D (2000) Irregular turbo-like codes. In: 2nd international symposium on turbo codes and related topics. Brest, France, pp 67–72

    Google Scholar 

  37. Richardson TJ, Shokrollahi MA, Urbanke RL (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47(2):619–637. doi:10.1109/18.910578

    Article  MATH  MathSciNet  Google Scholar 

  38. Sawaya HE, Boutros JJ (2003) Irregular turbo codes with symbol-based iterative decoding. In: 3rd international symposium on turbo codes and related topics. Brest, France

    Google Scholar 

  39. Sholiyi A (2011) Irregular block turbo codes for communication systems. Ph.D. thesis, Swansea University, Swansea, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar A. Alzubi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Alzubi, J.A., Alzubi, O.A., Chen, T.M. (2014). Literature Review. In: Forward Error Correction Based On Algebraic-Geometric Theory. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-08293-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08293-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08292-9

  • Online ISBN: 978-3-319-08293-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics