Skip to main content

Nonlinear Localization in Metamaterials

  • Chapter
  • First Online:
Nonlinear, Tunable and Active Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 200))

  • 2004 Accesses

Abstract

Metamaterials, i.e., artificially structured (“synthetic”) media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including Super-Resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tunability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-Based, and \({\fancyscript{PT}}\)-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of Low-Loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures. Recent experimental results on dynamical phenomena due to intrinsic nonlinearities in SQUID metamaterials are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  2. C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 47 (2007)

    Article  Google Scholar 

  3. C.M. Soukoulis, M. Wegener, Nat. Photonics 5, 523 (2011)

    ADS  Google Scholar 

  4. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. 11, 917 (2012)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  6. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  7. N.I. Zheludev, Science 328, 582 (2010)

    Article  ADS  Google Scholar 

  8. N.I. Zheludev, Opt. Photonics News 22, 31 (2011)

    Article  ADS  Google Scholar 

  9. J.G. Caputo, I. Gabitov, A.I. Maimistov, Phys. Rev. B 85, 205446 (2012)

    Article  ADS  Google Scholar 

  10. S. Linden, C. Enkrich, G. Dolling, M.W. Klein, J. Zhou, T. Koschny, C.M. Soukoulis, S. Burger, F. Schmidt, M. Wegener, IEEE J. Selec. Top. Quant. Electron. 12, 1097 (2006)

    Article  Google Scholar 

  11. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, M.V. Gorkunov, Appl. Phys. Lett. 91, 144107 (2007)

    Article  ADS  Google Scholar 

  12. I.V. Shadrivov, A.B. Kozyrev, D.W. van der Weide, Y.S. Kivshar, Appl. Phys. Lett. 93, 161903 (2008)

    Article  ADS  Google Scholar 

  13. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Opt. Express 16, 16058 (2008)

    Article  ADS  Google Scholar 

  14. S.M. Anlage, J. Opt. 13, 024001 (2011)

    Article  ADS  Google Scholar 

  15. A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser, V.N. Malnev, M. Noginov, Y.G. Rapoport, V.M. Shalaev, Laser Photonics Rev. 5(2), 287 (2010)

    Article  Google Scholar 

  16. M.C. Ricci, N. Orloff, S.M. Anlage, Appl. Phys. Lett. 87, 034102 (2005)

    Article  ADS  Google Scholar 

  17. M.C. Ricci, H. Xu, R. Prozorov, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, IEEE Trans. Appl. Supercond. 17, 918 (2007)

    Article  ADS  Google Scholar 

  18. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M.X. He, J.W. Zhang, J. Han, H. Chen, W. Zhang, Appl. Phys. Lett. 97, 071102 (2010)

    Article  ADS  Google Scholar 

  19. V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, N.I. Zheludev, Opt. Express 18, 9015 (2010)

    Article  ADS  Google Scholar 

  20. H.T. Chen, H. Yang, R. Singh, J.F. OHara, A.K. Azad, A. Stuart, S.A. Trugman, Q.X. Jia, A.J. Taylor, Phys. Rev. Lett. 105, 247402 (2010)

    Article  ADS  Google Scholar 

  21. B. Josephson, Phys. Lett. A 1, 251 (1962)

    Article  MATH  Google Scholar 

  22. A. Barone, G. Patternó, Physics Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  23. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, Philadelphia, 1986)

    Google Scholar 

  24. N. Lazarides, G.P. Tsironis, Appl. Phys. Lett. 16, 163501 (2007)

    Article  ADS  Google Scholar 

  25. N. Lazarides, G.P. Tsironis, M. Eleftheriou, Nonlinear Phenom. Complex Syst. 11, 250 (2008)

    Google Scholar 

  26. P. Jung, S. Butz, S.V. Shitov, A.V. Ustinov, Appl. Phys. Lett. 102, 062601 (2013)

    Article  ADS  Google Scholar 

  27. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Opt. Express 29(19), 22540 (2013)

    Article  ADS  Google Scholar 

  28. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Supercond. Sci. Technol. 26, 094003 (2013)

    Article  ADS  Google Scholar 

  29. M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Phys. Rev. X 3, 041029 (2013)

    Google Scholar 

  30. L. Esaki, Phys. Rep. 109, 603 (1958)

    Google Scholar 

  31. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Phys. Rev. A 84, 040101(R) (2011)

    Article  ADS  Google Scholar 

  32. D.W. Hook, Ann. Phys. (Berlin) 524(6–7), A106 (2012)

    Article  ADS  Google Scholar 

  33. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  34. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  35. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192–195 (2010)

    Google Scholar 

  36. N. Lazarides, G.P. Tsironis, Phys. Rev. Lett. 110, 053901 (2013)

    Article  ADS  Google Scholar 

  37. G.P. Tsironis, N. Lazarides, Appl. Phys. A 115, 449 (2014)

    Google Scholar 

  38. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. Stevens, G. Faulkner, D. Edwards, L. Solymar, Phys. Rev. B 73, 224406 (2006)

    Article  ADS  Google Scholar 

  39. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwardds, E. Shamonina, Phys. Stat. Sol. (b) 244, 1170 (2007)

    Article  ADS  Google Scholar 

  40. I. Sersić, M. Frimmer, E. Verhagen, A.F. Koenderink, Phys. Rev. Lett. 103, 213902 (2009)

    Article  ADS  Google Scholar 

  41. N.N. Rosanov, N.V. Vysotina, A.N. Shatsev, I.V. Shadrivov, D.A. Powell, Y.S. Kivshar, Opt. Express 19, 26500 (2011)

    Article  ADS  Google Scholar 

  42. S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)

    Article  ADS  Google Scholar 

  43. R.S. MacKay, S. Aubry, Nonlinearity 7, 1623 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. S. Aubry, Physica D 103, 201 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. P. Binder, D. Abraimov, A.V. Ustinov, S. Flach, Y. Zolotaryuk, Phys. Rev. Lett. 84(4), 745 (2000)

    Article  ADS  Google Scholar 

  46. E. Trías, J.J. Mazo, T.P. Orlando, Phys. Rev. Lett. 84, 741 (2000)

    Article  ADS  Google Scholar 

  47. J.L. Marín, F. Falo, P.J. Martínez, L.M. Floría, Phys. Rev. E 63, 066603 (2001)

    Article  ADS  Google Scholar 

  48. N. Lazarides, M. Eleftheriou, G.P. Tsironis, Phys. Rev. Lett. 97, 157406 (2006)

    Article  ADS  Google Scholar 

  49. M. Eleftheriou, N. Lazarides, G.P. Tsironis, Phys. Rev. E 77, 036608 (2008)

    Article  ADS  Google Scholar 

  50. N. Lazarides, G.P. Tsironis, Y.S. Kivshar, Phys. Rev. E 77(6), 065601(R) (2008)

    Article  ADS  Google Scholar 

  51. M. Eleftheriou, N. Lazarides, G.P. Tsironis, Y.S. Kivshar, Phys. Rev. E 80, 017601 (2009)

    Article  ADS  Google Scholar 

  52. G.P. Tsironis, N. Lazarides, M. Eleftheriou, Springer Ser. Opti. 150, 273 (2010)

    Article  Google Scholar 

  53. G.P. Tsironis, N. Lazarides, M. Eleftheriou, PIERS Online 5, 26 (2009)

    Article  Google Scholar 

  54. N. Lazarides, G.P. Tsironis, Proc. SPIE 8423, 84231K (2012)

    Article  ADS  Google Scholar 

  55. P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets, A.V. Ustinov, Nat. Commun. 5, 3730 (2014)

    Google Scholar 

  56. I.V. Shadrivov, A.A. Zharov, N.A. Zharova, Y.S. Kivshar, Photonics Nanostruct. Fundam. Appl. 4, 69 (2006)

    Article  ADS  Google Scholar 

  57. A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003)

    Article  ADS  Google Scholar 

  58. M. Lapine, M. Gorkunov, K.H. Ringhofer, Phys. Rev. E 67, 065601 (2003)

    Article  ADS  Google Scholar 

  59. P.J. Martínez, M. Meister, L.M. Floria, F. Falo, Chaos 13, 610 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. M.I. Molina, N. Lazarides, G.P. Tsironis, Phys. Rev. E 80, 046605 (2009)

    Article  ADS  Google Scholar 

  61. N. Lazarides, M.I. Molina, G.P. Tsironis, Acta Phys. Pol. A 116(4), 635 (2009)

    ADS  Google Scholar 

  62. N. Lazarides, G.P. Tsironis, Phys. Lett. A 374, 2179 (2010)

    Article  ADS  Google Scholar 

  63. M. Sato, B.E. Hubbard, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Graighead, Phys. Rev. Lett. 90, 044102 (2003)

    Article  ADS  Google Scholar 

  64. J.R. Kirtley, C.C. Tsuei, Ariando, H.J.H. Smilde, H. Hilgenkamp, Phys. Rev. B 72, 214521 (2005)

    Google Scholar 

  65. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, J. Appl. Phys. 92, 6252 (2002)

    Article  ADS  Google Scholar 

  66. S. Poletto, F. Chiarello, M.G. Castellano, J. Lisenfeld, A. Lukashenko, P. Carelli, A.V. Ustinov, Phys. Scr. T137, 014011 (2009)

    Article  ADS  Google Scholar 

  67. N. Lazarides, G.P. Tsironis, Supercond. Sci. Technol. 26, 084006 (2013)

    Article  ADS  Google Scholar 

  68. N. Lazarides, V. Paltoglou, G.P. Tsironis, Int. J. Bifurc. Chaos 21, 2147 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Union’s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement no 316165, and by the Thales Projects ANEMOS and MACOMSYS, cofinanced by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Lazarides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lazarides, N., Tsironis, G.P. (2015). Nonlinear Localization in Metamaterials. In: Shadrivov, I., Lapine, M., Kivshar, Y. (eds) Nonlinear, Tunable and Active Metamaterials. Springer Series in Materials Science, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-08386-5_14

Download citation

Publish with us

Policies and ethics