Skip to main content

Methods of Data Capture and Analysis

  • Chapter
  • First Online:
Human Footprints: Fossilised Locomotion?

Abstract

The sophistication and quality of field data obtained from human tracksites has increased dramatically during the last decade from the largely descriptive papers of Holocene tracksites common before the late 1990s to the more sophisticated data-rich papers of recent years. There are exceptions of course to this generalisation largely around the tracks at Laetoli which drove early innovation in methods. In this chapter we review the methods and approaches that can be adopted at human tracksites and equip the interested researcher with the knowledge necessary to execute such investigations themselves given suitable excavation permits and permissions. We recognise four broad stages to the process each of which is considered in turn: (1) geo-prospection and excavation; (2) recognition of human tracks and their dating; (3) methods of digital data capture; and (4) methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DC, Rohlf J, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Allen JRL (1989) Short paper: Fossil vertebrate tracks and indenter mechanics. J Geol Soc 146(4):600–602

    Article  Google Scholar 

  • Allen JRL (1997) Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: mechanics of formation, preservation and distribution. Philos Trans R Soc Lond B B352:481–518

    Article  Google Scholar 

  • Ashton N, Lewis SG, De Groote I et al (2014) Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PLoS One 9(2):e88329. doi:10.1371/journal.pone.0088329

    Article  Google Scholar 

  • Bennett MR, Harris JWK, Richmond BG et al (2009) Early hominin foot morphology based on 1.5 million year old footprints from Ileret, Kenya. Science 323:1197–1201

    Article  Google Scholar 

  • Bennett MR, Gonzalez S, Huddart D et al (2010) Probable Neolithic footprints preserved in inter-tidal peat at Kenfig, South Wales (UK). Proc Geol Assoc 121:66–76

    Article  Google Scholar 

  • Bennett MR, Falkingham P, Morse SA et al (2013) Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture. PLoS One 8(4):e60755. doi:10.1371/journal.pone.0060755

    Article  Google Scholar 

  • Berge C, Penin X, Pellé É (2006) New interpretation of Laetoli footprints using an experimental approach and Procrustes analysis: preliminary results. Comptes Rendus Palevol 5:561–569

    Article  Google Scholar 

  • Breithaupt BH, Matthews NA, Noble TA (2004) An integrated approach to three-dimensional data collection at dinosaur tracksites in the Rocky Mountain West. Ichnos 11(1–2):11–26

    Article  Google Scholar 

  • Brown T (1999) The science and art of tracking – nature’s path to spiritual discovery. Berkley Books, New York

    Google Scholar 

  • Cavanagh PR, Rodgers MM (1987) Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle Int 7(5):262–278

    Article  Google Scholar 

  • Cho DL, Park KH, Jin JH et al (2005) Age constraints on human footmarks in Hamori Formation, Jeju Island, Korea. J Petrol Soc Korea 14:149–156

    Google Scholar 

  • Clarke HH (1933) An objective method of measuring the height of the longitudinal arch in foot examinations. Res Q Am Phys Educ Assoc 4(3):99–107

    Google Scholar 

  • Crompton RH, Pataky TC, Savage R et al (2012) Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. J R Soc Interface 9:707–719

    Article  Google Scholar 

  • Day MH, Wickens EH (1980) Laetoli pliocene hominid footprints and bipedalism. Nature 286:385–387

    Article  Google Scholar 

  • de Gilbert JM, Sáez A (2009) Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 272(3):162–175

    Article  Google Scholar 

  • Falkingham PL (2012) Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontol Electronica 15:1T:15p

    Google Scholar 

  • Falkingham PL, Bates KT, Farlow JO (2014) Historical photogrammetry: Bird’s Paluxy River Dinosaur chase sequence digitally reconstructed as it was prior to excavation 70 years ago. PLoS One 9(4):e93247. doi:10.1371/journal.pone.0093247

    Article  Google Scholar 

  • Feinberg JM, Renne PR, Arroyo-Cabrales J, Waters MR, Ochoa-Castillo P, Perez-Campa M (2009) Age constraints on alleged “footprints” preserved in the Xalnene Tuff near Puebla, Mexico. Geology 37(3):267–270

    Article  Google Scholar 

  • Friess M (2010) Calvarial shape variation among Middle Pleistocene hominins: an application of surface scanning in palaeoanthropology. Comptes Rendus Palevol 9(6):435–443

    Article  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ et al (2007) Statistical parametric mapping: the analysis of functional brain images. Elsevier/Academic, Amsterdam

    Google Scholar 

  • Gilmour JC, Burns Y (2001) The measurement of the medial longitudinal arch in children. Foot Ankle Int 22(6):493–498

    Google Scholar 

  • Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM et al (2008) Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene Homo. J Hum Evol 55(4):627–638

    Article  Google Scholar 

  • González S, Huddart D, Bennett MR et al (2006) Human footprints in Central Mexico older than 40,000 years. Quat Sci Rev 25(3):201–222

    Article  Google Scholar 

  • Gunn N (1991) Old and new methods of evaluating footprint impressions by a forensic podiatrist. Br J Poediatry Med Surg 3:8–11

    Google Scholar 

  • Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix Ital J Mammal 24(1):103–109

    Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Springer, Boston

    Google Scholar 

  • Hammer Ø, Harper D (2006) Paleontological data analysis. Blackwells, Oxford

    Google Scholar 

  • Kennedy RB, Chen S, Pressman IS et al (2005) A large-scale statistical analysis of barefoot impressions. J Forensic Sci 50(5):1071–1080

    Article  Google Scholar 

  • Kim CB, Kim JY, KIM KS et al (2010) New age constraints for hominid footprints found on Jeju Island, South Korea. J Arch Sci 37:3338–3343

    Article  Google Scholar 

  • Kinahan J (1996) Human and domestic animal tracks in an archaeological lagoon deposit on the coast of Namibia. South Afr Archaeol Bull 51:94–98

    Article  Google Scholar 

  • Klingenberg CP (2008) Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol 35:186–190

    Article  Google Scholar 

  • Krapovickas V, Ciccioli PL, Mángano MG et al (2009) Paleobiology and paleoecology of an arid–semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeog Palaeoclimatol Palaeoecol 284(3):129–152

    Article  Google Scholar 

  • Laporte LF, Behrensmeyer AK (1980) Tracks and substrate reworking by terrestrial vertebrates in Quaternary sediments of Kenya. J Sediment Res 50:1337–1346

    Google Scholar 

  • Laury RL (1980) Paleoenvironment of a late Quaternary mammoth-bearing sinkhole deposit, Hot Springs, South Dakota. Geol Soc Am Bull 91(8):465–475

    Article  Google Scholar 

  • Lea PD (1996) Vertebrate tracks in Pleistocene eolian sand-sheet deposits of Alaska. Quat Res 45(2):226–240

    Article  Google Scholar 

  • Leakey MD (1978) Pliocene footprints at Laetoli, northern Tanzania. Antiquity 52:133

    Google Scholar 

  • Leakey MD, Harris JM (1987) Laetoli: a Pliocene site in northern Tanzania. Clarendon, Oxford

    Google Scholar 

  • Levine D, Richards J, Whittle MW (2012) Whittle’s gait analysis, 5th edn. Elsevier Health Sciences, London

    Google Scholar 

  • Lockley M, Roberts G, Kim JY (2008) In the footprints of our ancestors: an overview of the hominid track record. Ichnos 15:106–125

    Article  Google Scholar 

  • Loope DB (1986) Recognizing and utilizing vertebrate tracks in cross section: Cenozoic hoofprints from Nebraska. Palaios 1(2):141–151

    Article  Google Scholar 

  • Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–37. doi:10.1016/S1361-8415(01)80026-8

    Article  Google Scholar 

  • Mastrolorenzo G, Petrone P, Pappalardo L et al (2006) The Avellino 3780-yr-BP catastrophe as a worst-case scenario for a future eruption at Vesuvius. Proc Natl Acad Sci 103:4366–4370. doi:10.1073/pnas.0508697103

    Article  Google Scholar 

  • McDougal IAN, Brown FH (2006) Precise 40Ar/39Ar geochronology for the upper Koobi Fora Formation, Turkana Basin, northern Kenya. J Geol Soc 163:205–220

    Article  Google Scholar 

  • Melchor RN, Bedatou E, de Valais S et al (2006) Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an early Mesozoic ephemeral fluvio-lacustrine system from Argentina: implications for the Scoyenia ichnofacies. Palaeogeogr Palaeoclimatol Palaeoecol 239:253–285

    Article  Google Scholar 

  • Meldrum DJ, Chapman RE (2007) Morphometrics of the outline shape of hominid footprints. Am J Phys Anthropol Suppl 42:170. doi:10.1002/ajpa

    Google Scholar 

  • Meldrum DJ, Lockley MG, Lucas SG et al (2011) Ichnotaxonomy of the Laetoli trackways: the earliest hominin footprints. J Afr Earth Sci 60(1):1–12

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Morse SA, Bennett MR, Gonzalez S et al (2010) Techniques for verifying human footprints: reappraisal of pre-Clovis footprints in Central Mexico. Quat Sci Rev 29(19):2571–2578

    Article  Google Scholar 

  • Morse SA, Bennett MR, Liutkus-Pierce C et al (2013) Holocene footprints in Namibia: the influence of substrate on footprint variability. Am J Phys Anthropol 151:265–279

    Article  Google Scholar 

  • Pataky TC, Goulermas JY (2008) Pedobarographic statistical parametric mapping (pSPM): A pixel-level approach to foot pressure image analysis. J Biomech 41:2136–2143

    Article  Google Scholar 

  • Pataky TC, Caravaggi P, Savage R et al (2008a) New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). J Biomech 41:1987–1994

    Article  Google Scholar 

  • Pataky TC, Goulermas JH, Crompton RH (2008b) A comparison of seven methods of within-subjects rigid-body pedobarographic image registration. J Biomech 41:3085–3089

    Article  Google Scholar 

  • Perez SI, Bernal V, Gonzalez PN (2006) Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat 208:769–784

    Article  Google Scholar 

  • Polly PD (2008) Developmental dynamics and G-Matrices: can morphometric spaces be used to model phenotypic evolution? Evol Biol 35:83–96

    Article  Google Scholar 

  • Raichlen DA, Gordon AD, Harcourt-Smith WE et al (2010) Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics. PLoS One 5(3):e9769

    Article  Google Scholar 

  • Reel S, Rouse S, Vernon W et al (2010) Reliability of a two-dimensional footprint measurement approach. Sci Justice 50:113–118

    Article  Google Scholar 

  • Reel S, Rouse S, Vernon W et al (2012) Estimation of stature from static and dynamic footprints. Forensic Sci Int 219:283-e1

    Article  Google Scholar 

  • Richtsmeier JT, Burke Deleon V, Lele SR (2002) The promise of geometric morphometrics. Am J Phys Anthropol 119(S35):63–91

    Article  Google Scholar 

  • Robbins LM (1985) Footprints: collection, analysis, and interpretation. CC Thomas, Springfield

    Google Scholar 

  • Roberts G, Gonzalez S, Huddart D (1996) Inter-tidal Holocene footprints and their archaeological significance. Antiquity 70:647–651

    Google Scholar 

  • Schmincke H-U, Kutterolf S, Perez W et al (2009) Walking through volcanic mud: the 2,100 year old Acahualinca footprints (Nicaragua). Bull Volcano 71:479–493

    Article  Google Scholar 

  • Schmincke HU, Rausch J, Kutterolf S et al (2010) Walking through volcanic mud: the 2,100 year-old Acahualinca footprints (Nicaragua) II: the Acahualinca people, environmental conditions and motivation. Int J Earth Sci 99(1):279–292

    Article  Google Scholar 

  • Schwartz L, Britten RH, Thompson LR (1928) Studies in physical development and posture. US Publ Health Bull No. 179. US Government Printing Office, Washington, DC

    Google Scholar 

  • Scrivner PJ, Bottjer DJ (1986) Neogene avian and mammalian tracks from Death Valley National Monument, California: their context, classification and preservation. Palaeogeogr Palaeoclimatol Palaeoecol 57:285–331

    Article  Google Scholar 

  • Sforza C, Fragnito N, Serrao G, Ferrario VF (2000) Harmonic analysis of footprint symmetry in healthy adolescents. Ann Anat 182(3):285–291

    Article  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Sohn YK, Cronin SJ, Brenna M et al (2012) Ilchulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents and discrete eruptive phases. Geol Soc Am Bull 124:259–274

    Article  Google Scholar 

  • Sonh YK, Park JB, Khim BK et al (2002) Stratigraphy petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island. Korea J Volcanol Geother Res 119:1–20

    Google Scholar 

  • Stavlas P, Grivas TB, Michas C et al (2005) The evolution of foot morphology in children between 6 and 17 years of age: a cross-sectional study based on footprints in a Mediterranean population. J Foot Ankle Surg 44:424–428

    Article  Google Scholar 

  • Tuttle RH (1984) Bear facts and Laetoli impressions. Am J Phys Anthropol 63(2):230

    Google Scholar 

  • Tuttle RH (1987) Kinesiological inferences and evolutionary implications from Laetoli bipedal trails G-1. G-2t3 and A. In: Leakey MD, Harris JM (eds) Laetoli: a Pliocene site in northern Tanzania. Clarendon Press, Oxford, pp 503–523

    Google Scholar 

  • Tuttle RH (2008) Footprint clues in hominid evolution and forensics: Lessons and limitations. Ichnos 15(3–4):158–165

    Article  Google Scholar 

  • Tuttle RH, Webb D, Weidl E et al (1990) Further progress on the Laetoli trails. J Archaeol Sci 17:347–362

    Article  Google Scholar 

  • Van der Lingen GJ, Andrews PB (1969) Hoof-print structures in beach sand. J Sediment Res 39(1):350–357

    Article  Google Scholar 

  • Webster MARK, Sheets HD (2010) A practical introduction to landmark-based geometric morphometrics. Quant Methods Paleobiol Paleontol Soc Papers 16:163–188

    Google Scholar 

  • Wilkinson MJ, Menz HB, Raspovic A (1995) The measurement of gait parameters from footprints. Foot 5:84–90

    Article  Google Scholar 

  • Willey P, Stolen J, Crothers G et al (2005) Preservation of prehistoric footprints in Jaguar Cave, Tennessee. J Cave Karst Stud 67(1):61–68

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Bennett, M.R., Morse, S.A. (2014). Methods of Data Capture and Analysis. In: Human Footprints: Fossilised Locomotion?. Springer, Cham. https://doi.org/10.1007/978-3-319-08572-2_2

Download citation

Publish with us

Policies and ethics