Skip to main content

Finite Quantification in Hierarchic Theorem Proving

  • Conference paper
Automated Reasoning (IJCAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8562))

Included in the following conference series:

Abstract

Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are “reasonably complete” even in the presence of free function symbols ranging into a background theory sort. In this paper we consider the case when all variables occurring below such function symbols are quantified over a finite subset of their domains. We present a non-naive decision procedure for background theories extended this way on top of black-box decision procedures for the EA-fragment of the background theory. In its core, it employs a model-guided instantiation strategy for obtaining pure background formulas that are equi-satisfiable with the original formula. Unlike traditional finite model finders, it avoids exhaustive instantiation and, hence, is expected to scale better with the size of the domains. Our main results in this paper are a correctness proof and first experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. Journal of Applied Logic 7(1), 58–74 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 85–100. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Baumgartner, P., Waldmann, U.: Hierarchic superposition: Completeness without compactness. In: Kosta, M., Sturm, T. (eds.) MACIS (2013)

    Google Scholar 

  7. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model building. In: Baumgartner, P., Fermüller, C.G. (eds.) CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications (2003)

    Google Scholar 

  9. Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Halpern, J.: Presburger Arithmetic With Unary Predicates is \(\Pi_1^1\)-Complete. Journal of Symbolic Logic 56(2), 637–642 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. In: Mathematics in Computer Science, pp. 1–30 (2012)

    Google Scholar 

  15. McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)

    Google Scholar 

  16. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  19. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92, Australian National University, Automated Reasoning Project, Canberra (1992)

    Google Scholar 

  23. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Mellish, C. (ed.) IJCAI 1995. Morgan Kaufmann (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Baumgartner, P., Bax, J., Waldmann, U. (2014). Finite Quantification in Hierarchic Theorem Proving. In: Demri, S., Kapur, D., Weidenbach, C. (eds) Automated Reasoning. IJCAR 2014. Lecture Notes in Computer Science(), vol 8562. Springer, Cham. https://doi.org/10.1007/978-3-319-08587-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08587-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08586-9

  • Online ISBN: 978-3-319-08587-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics