Skip to main content

Fuzzy Sets for a Declarative Description of Multi-adjoint Logic Programming

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8536))

Included in the following conference series:

Abstract

A powerful research line in the design of declarative languages consists in the introduction of expressive resources with a fuzzy taste on their cores, in order to provide comfortable computational constructs for easily solving real-world scientific/engineering problems. Into the fuzzy logic programming arena, the so-called multi-adjoint approach (MALP in brief) has emerged as an interesting paradigm for which our research group has developed during the last years the \(\mathcal F \mathcal L \mathcal O \mathcal P \mathcal E \mathcal R\) programming environment and the FuzzyXPath application in the field of the semantic web. Since the practicality of declarative languages is strongly dependent of their theoretical foundations, here we focus on topics related with the declarative semantics of the MALP framework. So, under an innovative point of view relying on fuzzy sets theory, in this paper we re-formulate in a very simple and elegant way our original model theory-based notions of least fuzzy Herbrand model and (fuzzy) correct answer. Apart for simplifying the proofs relating these concepts, our results are nicely strengthened with homologous ones in the field of pure logic programming, but largely surpassing them thanks to the fuzzy dimension of the MALP language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendros-Jiménez, J.M., Luna Tedesqui, A., Moreno, G.: A Flexible XPath-based Query Language Implemented with Fuzzy Logic Programming. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 186–193. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Approach. Fuzzy Sets and Systems 154, 16–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Julián, P., Moreno, G., Penabad, J.: Operational/Interpretive Unfolding of Multi-adjoint Logic Programs. Journal of Universal Computer Science 12(11), 1679–1699 (2006)

    Google Scholar 

  4. Julián, P., Moreno, G., Penabad, J.: An Improved Reductant Calculus using Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems 160, 162–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)

    Google Scholar 

  6. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  7. Medina, J., Ojeda-Aciego, M.: Multi-adjoint logic programming. In: Proc. of the 10th International Conference on Information Processing and Managment of Uncertainty in Knowledge-Based Systems, IPMU 2004, Perugia, pp. 823–830 (2004)

    Google Scholar 

  8. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001)

    Google Scholar 

  9. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 290–297. Springer, Heidelberg (2001)

    Google Scholar 

  10. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Morcillo, P.J., Moreno, G.: Programming with fuzzy logic rules by using the FLOPER tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Fuzzy Computed Answers Collecting Proof Information. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 445–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Dedekind-MacNeille completion and cartesian product of multi-adjoint lattices. International Journal of Computer Mathematics, 1–11 (2012)

    Google Scholar 

  14. Mukaidono, M., Shen, Z., Ding, L.: Fundamentals of fuzzy prolog. International Journal Approximate Reasoning 3(2), 179–193 (1989)

    Article  MATH  Google Scholar 

  15. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 3rd edn. Chapman & Hall/CRC, Boca Ratón, Florida (2006)

    Google Scholar 

  16. Pedrycz, W., Gomide, F.: Introduction to fuzzy sets. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Shapiro, E.Y.: Logic programs with uncertainties: A tool for implementing rule-based systems. In: Proc. of the 8th International Joint Conference on Artificial Intelligence, IJCAI 1983, Karlsruhe, pp. 529–532. University of Trier (1983)

    Google Scholar 

  18. van Emden, M.H.: Quantitative deduction and its fixpoint theory. Journal of Logic Programming 3(1), 37–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vojtáš, P., Paulík, L.: Soundness and completeness of non-classical extended SLD-resolution. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050, pp. 289–301. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moreno, G., Penabad, J., Vázquez, C. (2014). Fuzzy Sets for a Declarative Description of Multi-adjoint Logic Programming. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds) Rough Sets and Current Trends in Computing. RSCTC 2014. Lecture Notes in Computer Science(), vol 8536. Springer, Cham. https://doi.org/10.1007/978-3-319-08644-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08644-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08643-9

  • Online ISBN: 978-3-319-08644-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics